We know that antibiotics treat bacterial infections. We also know why they work. Tetracycline antibiotics, for example, stop bacteria from making protein. Like a boot on a wheel, the drugs bind to the bacterial cell's ribosome--where protein is made--and prevent it from working. Without protein, the bacteria weaken and die.
Recently, researchers discovered a possible new job for these tetracycline antibiotics: treatment for pathological inflammation and cancer in humans.
This treatment has proven effective in clinical trials. Two patients, a young man and an elderly woman[1], who suffered from rare, stubborn diseases experienced complete remission after treatment with doxycycline, a type of tetracycline. Other tetracycline varieties have shown potential in early clinical trials with patients who have a number of diseases, including refractory metastatic cancers, rheumatoid arthritis and osteoarthritis, fragile X syndrome, AIDS-related Kaposi's sarcoma, and abdominal aortic aneurysm.
And yet, despite these promising results, exactly how the treatment works remained elusive.
Now, in a new paper published in Cell Chemical Biology, Andrew Myers and his team provide an answer. "Despite these promising clinical results and a wealth of published scientific research," the paper states, "no relevant target(s) or mechanism(s) have been clearly identified to account for these non-canonical effects of tetracyclines." This knowledge gap impedes further drug development and treatment.
So, Myers and his team set out to track and map exactly what happens when two tetracycline analogs, doxycycline and Col-3, enter a cell. This is far from easy. Like tracking a mouse in a blizzard, "the detective work to find targets of drug molecules is painstakingly difficult," says Jon Mortison, the paper's first author.
The team used a powerful technique ("affinity isolation in tandem with mass spectrometry (MS)-based quantitative SILAC--stable isotope labeling by amino acids in cell culture-- proteomics") to isolate each drug's target. In so doing, they observed that both analogs target our cell's ribosome, just as they do in a bacterial cell.
"To our knowledge," the paper notes, "this represents the first direct evidence that tetracyclines have observable effects on human cytosolic ribosomes."
To uncover this evidence, the team used a novel strategy to hunt down the tetracycline targets. They believe their method could be adopted by other researchers for similar purposes, to build a broader map for how drugs interact with our bodies. "RNA targets in drug discovery is becoming an area of increasing interest," Mortison said. "Some large companies and biotechs are already jumping into the space of identifying RNA targets for their pipelines."
Going forward, the team hopes to clarify whether the exact point where doxycycline and Col-3 bind to our ribosomes could boost their ability to slow the spread of inflammation and cancer. Such precise information would provide crucial insights for drug development.
Further exploration is required to compile this intel. But Myers and his team have provided a crucial foundation for these studies to proceed. Soon, tetracyclines could be a valuable treatment option for numerous diseases, including cancer. In the meantime, the team's new technique could, like a well-designed field guide, hasten drug discovery for myriad diseases.
Source: Harvard University
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.