More and more common antibiotics are losing their effectiveness because they are used too often, allowing bacteria to develop resistance to the drugs. A University of Rhode Island researcher has found a solution to this problem with a natural compound that boosts antibiotic strength from 100 to 1,000 times.
While conducting research on infection prevention, URI microbiology professor Paul Cohen stumbled upon a compound -- lysophosphatidic acid -- that is naturally produced in the human body in great quantities wherever there is inflammation.
According to Cohen, bacteria are divided into two groups -- gram-positive and gram-negative -- based on the structure of their cell walls. When lysophosphatidic acid is administered in small amounts (80 micromolars), it sensitizes the gram-negative bacteria 100 to 1,000 times, so only small quantities of antibiotics are needed to kill the bacteria. When administered to fight gram-positive bacteria, the compound kills the bacteria without needing any antibiotics.
In combination with this compound, even older antibiotics become much more powerful, Cohen said. It not only makes older antibiotics useful again, but it also allows them to be used in reduced dosages.
Lysophosphatidic acid is currently available commercially as a powder for researchers. Cohen holds a patent on its use with antibiotics. He said it can be formulated for a variety of applications, depending on where the infection is found.
For cystic fibrosis patients, for instance, who often suffer from lung infections, it can be formulated for use as an inhalant. Burn patients or those with acne can use it as a lotion to rub on the skin. It can be applied in many ways, said the Narragansett resident who worked on the project with URI professor David Laux, former URI technician Maryjane Utley and Danish researcher Karen Krogfelt of the Statenserum Institut in Copenhagen.
Cohen said that since the compound is naturally found in the bloodstream, it is non-toxic and patients should not be allergic to it. We know it works in the test tube, he said, but we still need to show that it works on animals. Im sure that for surface diseases like acne, doctors would use it right away.
Cohen is seeking pharmaceutical-based partners to invest in the project and fund the next stage of research to bring this discovery to market.
Source: University of Rhode Island
IDEA in Action: A Strategic Approach to Contamination Control
January 14th 2025Adopting IDEA—identify, define, explain, apply—streamlines contamination control. Infection control professionals can mitigate risks through prevention, intervention, and training, ensuring safer health care environments and reducing frequent contamination challenges.
Balancing Freedom and Safety: When Public Health Mandates Are Necessary
January 9th 2025Public health mandates, such as lockdowns, masking, and vaccination, balance liberty and safety, ensuring critical protections during pandemics like COVID-19 while fostering long-term survival through science.
Long-Term Chronicles: Infection Surveillance Guidance in Long-Term Care Facilities
January 8th 2025Antibiotic stewardship in long-term care facilities relies on McGeer and Loeb criteria to guide infection surveillance and appropriate prescribing, ensuring better outcomes for residents and reducing resistance.
Considering Avian Flu: World Health Organization Expert Warns Against Raw Milk
January 6th 2025Drinking raw milk poses risks of disease transmission, especially with H5N1 outbreaks. Expert Richard J. Webby, PhD, advises against raw cow or goat milk consumption due to its unpredictable and significant risks.