Surgical gloves create a protective barrier, however high perforation rates (6 percent to 60 percent) are reported in the literature. A recent study has suggested linkage between glove perforation and increased risk of surgical site infection (SSI). Researchers at the Medical College of Wisconsin and from the Ernst Moritz Amdt University in Greifswald, Germany evaluated a model of microbial passage through conventional single (A), double-thickness (B) and a tri-layer innovative surgical glove (C) with antimicrobial activity.
Bacterial passage was assessed following multiple glove puncture using S. aureus and B. (Pseudomonas) diminuta (BD) in a model of gross wound contamination in volunteers in Groups A, B and C. Using microbiological methods bacterial passage was assessed at 5-, 10-, 30- and 45-minute exposure, expressed as cfu per unit time. A total of  six repetitions were made for each glove/time interval. The Mann Whitney test was used to assess the differences in microbial passage between the three groups.
Microbial passage was evaluated separately (5, 10, 30 and 45 minutes) and combined (5/10 and 30/45). No significant differences were observed in microbial passage between Groups A and B at 10, 30, or 45 minutes, a significant difference was observed in Group C at 5, 30 and 45 minutes compared to A and B for SA and BD. When timed groups were combine a significant reduction in passage of SA and BD was observed compared to Groups A and B.
Edmiston, et al. concluded that an antimicrobial surgical glove was effective at reducing microbial passage (p<0.05-p<0.005) following glove perforation compared to single or double-layer gloves. They add that these findings suggest further studies are warranted to assess the clinical efficacy of an innovative antimicrobial glove technology as a SSI risk-reduction strategy. Their research was presented at the International Conference on Prevention & Infection Control (ICPIC) held in Geneva, Switzerland June 29-July 2, 2011.
Reference: CE Edmiston, CJ Krepel, BD Lewis, KR Brown, PJ Rossi, GR Seabrook and G Daeschlein. Using innovative antimicrobial glove technology to reduce the risk of surgical wound contamination following glove perforation. Presentation at International Conference on Prevention & Infection Control (ICPIC). BMC Proceedings 2011, 5(Suppl 6):O33
CDC HICPAC Considers New Airborne Pathogen Guidelines Amid Growing Concerns
November 18th 2024The CDC HICPAC discussed updates to airborne pathogen guidelines, emphasizing the need for masks in health care. Despite risks, the committee resisted universal masking, highlighting other mitigation strategies
Breaking the Cycle: Long COVID's Impact and the Urgent Need for Preventative Measures
November 15th 2024Masking, clean air, and vaccinations are essential in combating COVID-19 and preventing long-term impacts, as evidence mounts of long COVID's significant economic, cognitive, and behavioral effects.
The Critical Role of Rapid Diagnostics in Antibiotic Stewardship
November 6th 2024Rapid diagnostics enhance patient outcomes by enabling prompt, targeted treatments, reducing inappropriate antibiotic use, and combating antimicrobial resistance through informed clinical decisions and stewardship programs.