Sharks are often the subject of TV specials or news stories focusing on their attacks on humans. But scientists are finding that sharks could inspire a new type of surface that would attack bacteria, helping humans instead of hurting them. As reported in ACS Applied Materials & Interfaces, researchers have designed a coating that is infused with antimicrobial agents and has the patterned diamond-like texture of shark skin.
Fighting bacteria is an ongoing battle, resulting in more than 2 million infections and 23,000 deaths in the U.S. every year, according to the Centers for Disease Control and Prevention (CDC). As a result of overusing antibiotics, bacterial resistance to these drugs is on the rise. Patients in hospitals who are already battling illnesses or have compromised immune systems are especially at risk of developing infections just by touching contaminated bedrails and door knobs. Scientists have been developing coatings for these high-touch surfaces to fight the spread and growth of microbes. For example, Sharklet AF™ is a coating designed to mimic a shark's skin, and it reduces the ability of bacteria to adhere to surfaces. But long-term use will result in bacteria accumulation. James J. Watkins, Jessica D. Schiffman and colleagues wanted to see if adding titanium dioxide (TiO2) nanoparticles, which are antibacterial, to a shark skin material would efficiently fight off microbes.
The team printed their own shark skin surfaces with polymer and ceramic composites, and added titanium dioxide nanoparticles to them. The shark skin surface without nanoparticles reduced the attachment of E. coli by 70 percent compared to smooth films. But shark skin surfaces with TiO2 nanoparticles exposed to UV light for one hour killed off over 95 percent of E. coli and 80 percent of Staphylococcus aureus. The group says the fabrication method could be scaled up for mass production.
The authors acknowledge funding from the U.S. Army Laboratories, the National Institutes of Health and the National Science Foundation NRT program.
Source: American Chemical Society
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.
Phage Therapy’s Future: Tackling Antimicrobial Resistance With Precision Viruses
April 24th 2025Bacteriophage therapy presents a promising alternative to antibiotics, especially as antimicrobial resistance continues to increase. Dr. Ran Nir-Paz discusses its potential, challenges, and future applications in this technology.