Infections with Salmonella bacteria, often caused by eating or handling undercooked meat or eggs, affect about 100 million people a year worldwide. The suffering the infection causes â abdominal cramps, fever and diarrhea â is the result of an extremely precise set of molecular interactions between the bacterium and the infected human’s cells. In a new study published in the Journal of Biological Chemistry, researchers at Imperial College London and the Francis Crick Institute report some of the details of how Salmonella shuts down an immune pathway after infection.
When a pathogen like Salmonella enterica infects a cell, the cell activates a series of signals, culminating in certain genes being turned on to activate protective immune responses. One group of proteins that turn on immune-related genes is known as the NF-kB transcription factors. Salmonella, however, produces its own set of proteins that stop this from happening.
“These (bacterial proteins) function as a molecular pair of scissors, cutting up NF-kB transcription factors and thereby sabotaging the infected cells’ immune response,” said Teresa Thurston, the investigator at Imperial who oversaw the work.
These sabotage proteins, collectively called zinc metalloprotease effector proteins, act surprisingly delicately for saboteurs. In the human cells that Salmonella enterica infects, there are five different types of NF-kB proteins, but the Salmonella effectors cut up only three of them, leaving the other two untouched.
“The interaction between the host and the pathogen is very complex,” Thurston said. “So what I think this selectivity means is that (the bacterial proteins) are able to affect a particular arm of the immune response while keeping other arms untouched. And, in that way, they're really fine-tuning the host immune response rather than having a blanket bomb-out effect.”
Thurston’s team, led by graduate student Elliott Jennings, wanted to understand how these bacterial proteins were able to behave so accurately on a molecular level. To do so, the team produced a detailed 3-D structure of one of them, both alone and in complex with a human NF-kB protein.
They found a sophisticated mechanism of molecular sabotage. The NF-kB transcription factors do their job of turning on immune system genes by binding to DNA at specific locations. The Salmonella effector proteins take on the approximate shape and electrical charge of the DNA backbone, essentially tricking NF-kB proteins to stick to them instead; once this happens, the Salmonella protein cuts up the NF-kB protein.
The precision with which this occurs â targeting only three out of five NF-kB proteins â is strongly determined by the way the bacterial effectors interact with a single amino acid in the targeted NF-kB proteins.
“With a single change in the amino acid sequence, we could create a target that could no longer be cut,” Thurston said. “Also vice versa: After changing just one amino acid, (the effector) was then able to cleave a protein that was not normally targeted.”
In other words, the bacterial proteins distinguish between the human proteins based on just one specific amino acid.
Together, these findings contribute to a complex picture of how Salmonella runs roughshod over its human host by carefully breaking key molecules in immune signaling pathways.
“Maybe once we have a complete picture of how bacteria get one over their hosts, we can shift the balance in favor of the host,” Thurston said. “In the case of Salmonella infection, this could be important, as many of the fatalities are associated with immune-compromised patients.”
The study was funded by the Wellcome Trust, the Biotechnology and Biological Sciences Research Council of the UK, Cancer Research UK, the Medical Research Council of the UK, Imperial College and the Francis Crick Institute.
Source: American Society for Biochemistry and Molecular Biology
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.