Researchers at the universities in Stockholm and Lund, in collaboration with researchers from the University of California, have found a new toxin that selectively targets mosquitoes. This can lead to innovative and environmentally friendly approaches to reduce malaria. The results are presented in an article published in Nature Communications.
Botox (Botulinum neurotoxins) and the toxin causing tetanus belong to the same family of proteins and are among the most toxic substances known. Previously this family of toxins has been believed to only target vertebrates such as humans, mice and birds. But now, researchers have found a toxin which targets the group of mosquitoes that are responsible for transmitting malaria.
"We have discovered a neurotoxin, PMP1, that selectively targets malaria mosquitos, demonstrating that this family of toxins have a much broader host spectrum than previously believed," says PÃ¥l Stenmark of Stockholm University and Lund University. He leads the joint research group from the two Swedish universities that has discovered the new neurotoxin in close collaboration with Sarjeet Gill's research group at the University of California.
"PMP1 makes it possible to reduce the prevalence of malaria in a new and environmentally friendly way. Because these toxins are proteins, they do not leave any artificial residues as they decompose. PMP1 may also be developed into biological insecticides designed to target other selected disease vectors or pests", PÃ¥l Stenmark says.
Today, insecticides and mosquito nets treated with insecticides are the main means of combating the spread of malaria, but new methods of combating malaria mosquitoes must be developed constantly as mosquitoes become resistant to most toxins over time.
"We found PMP1 in a bacterium from two threatened habitats: a mangrove swamp in Malaysia and the forest floor in Brazil. It shows just how important it is to protect these treasure chests of biological diversity," Stenmark says.
The article "A neurotoxin that specifically targets Anopheles mosquitoes" is published in Nature Communications.
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.