Some antidepressants could potentially be used to treat a wide range of diseases caused by bacteria living within cells, according to work by researchers in the Virginia Commonwealth University School of Medicineand collaborators at other institutions.
Research published in the April print edition of the journal Life Science Alliance, shows that antidepressant drugs called FIASMAs, including desipramine, amitriptyline, and nortriptyline, halt the growth or kill four different intracellular bacterial pathogens in tissue cell culture and animal models.
“Antibiotic options for diseases caused by intracellular bacteria are limited because many of these drugs cannot penetrate our cell membranes. In essence, the bacteria are protected,” said Jason Carlyon, PhD, leader of the study and professor in the VCU Department of Microbiology and Immunology.
Tetracycline antibiotics are most commonly prescribed to treat intracellular bacterial infections because they can cross cell membranes to reach the microbes. However, tetracyclines can cause allergic reactions in some patients and physicians advise against their use by pregnant women and children due to undesirable side effects. Additionally, antibiotic resistance in some intracellular bacteria has been reported.
“It would be highly beneficial to have a class of drugs to treat such diseases in patients for whom tetracyclines are contraindicated,” Carlyon said. “These drugs could provide an alternative to antibiotics or even be used in conjunction with them as an augmentation approach to treat infections that typically require prolonged courses of antibiotic therapy, such as those caused by Chlamydia pneumoniae and Coxiella burnetti.”
The team of researchers from VCU, Indiana University Medical Center, University of Nebraska Medical Center, University of Arkansas for Medical Sciences, and the University of South Florida, including Carlyon and lead author Chelsea Cockburn, an MD/PhD candidate, are the first to investigate the mechanisms by which FIASMAs target multiple intracellular bacteria in detail.
The scientists tested FIASMA susceptibility for four bacterial species that cause human granulocytic anaplasmosis, a tick-borne disease that attacks white blood cells called neutrophils and can be fatal to immune compromised individuals; Q fever, a debilitating pneumonic disease; and two chlamydia infections.
FIASMAs ultimately disrupt how cholesterol, a key nutrient utilized by many intracellular pathogens, traffics inside cells to alter bacterial access to the lipid. The researchers first proved FIASMA treatment efficacy by halting anaplasmosis in both tissue culture and mice. Next, they extended their observations to demonstrate that FIASMA treatment killed the Q fever agent,Coxiella burnetii, and partially inhibited chlamydial infections in cell culture.
“Since FIASMAs influence cholesterol trafficking in the cell and cholesterol plays a role in so many facets of our biology, they have been used to treat a wide variety of conditions and diseases,” Carlyon said.
He added that the effect of FIASMAs on intracellular cholesterol ultimately bypasses the need to directly target the bacteria.
“What is so exciting about this study is that the class of drugs we evaluated targets an enzyme in our cells regulating cholesterol, not the bacteria,” Carlyon said. “I do not envision the pathogens being able to develop resistance to this treatment because it is targeting a host pathway that they very much need to grow and survive inside of the body.”
Other investigators involved in the research included Rebecca Martin, PhD, and Daniel Conrad, PhD, (VCU), Charles Chalfant, PhD, (University of South Florida), Daniel Voth, PhD, (University of Arkansas for Medical Sciences), Elizabeth Rucks, PhD, (University of Nebraska Medical Center) and Stacey Gilk, PhD, (Indiana University School of Medicine).
Research was supported by grants from the NIH-National Institute of Allergy and Infectious Diseases, including 1R01 AI139072, 2R01 AI072683, 5R01 AI018697, 1R01 AI139176, 1R21 AI127931, and 1R21 AI121786, and from the NIH-National Institute of General Medicine Sciences (1P20 GM103625).
Source: Virginia Commonwealth University
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.