Researchers at Utrecht University have demonstrated how the pathogenic Salmonella bacteria takes advantage of one of the body's defense mechanisms in order to invade cells. This discovery marks an important step toward developing new medicines to prevent Salmonella infections. In the Netherlands, some 50,000 people are infected with Salmonella bacteria each year via raw animal products such as chicken or pork, eggs or dairy products. An article on these findings will be published in the scientific journal PLOS Pathogens on 14 February.
The researchers, led by infection biologist Dr Karen Strijbis, discovered that Salmonella takes advantage of defensive ‘mucins’ in order to invade intestinal cells and start an infection. This mucin, MUC1, is a large protein with many sugars (glycans) and is extremely common in cells in the intestinal tract. According to Strijbis: ‘These results came as a complete surprise, as we had thought that MUC1 would actually offer protection against a Salmonella infection.’
"By using a clever trick, the Salmonella bacteria have found a way to take advantage of one of the body's defensive mechanisms in order to cause an infection," Strijbis explains. Ordinarily, the mucus layer in the intestines represents an important line of defense against bacterial bowel infections such as Salmonella. This mucus layer consists of specialised proteins known as mucins, which form a barrier that bacteria are unable to penetrate. This prevents infections from taking hold in the body. The researchers have now shown that the bacteria use a ‘sticky’ protein known as an adhesin with 53 adhesion receptors (SiiE) which attaches to the plentiful sugars on MUC1 like a zipper. By using SiiE to stick to MUC1, Salmonella is able to bypass the defences at the surface of intestinal cells and successfully invade the cells.
A Salmonella infection in the bowels causes severe diarrhoea lasting three to seven days and may also lead to more serious forms of illness such as typhoid fever. In this latest discovery, the researchers see possibilities for the future: "This new knowledge will enable us to come up with ways to prevent Salmonella infections."
The scientific article was published in PLOS Pathogens on Feb. 14, 2019.
Source: Utrecht University
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.