Using two experimental anti-malarial vaccines, which work in different ways, can greatly reduce the number of malaria infections in animal studies. Experimental vaccines, which independently achieve 48 percent and 68 percent reductions in malaria cases, can achieve 91 percent reduction when combined.
Presently, each vaccine is at a different stage of human trials, and there have not been efforts to combine them. However, a team led by Imperial College London have now tested the effectiveness when using the two types of vaccine together.
The study, published today in the journal eLife, used genetically altered mouse parasites that express proteins expressed on the human version of the malaria parasite. The research was funded by the PATH Malaria Vaccine Initiative and the Medical Research Council (MRC), including researchers at Imperial's MRC Centre for Outbreak Analysis and Modelling.
Lead researcher Dr. Andrew Blagborough, from the Department of Life Sciences at Imperial, said, "This is the first direct evidence than combining vaccines of different types significantly improves their efficacy in terms of reducing malarial burden.
"Reaching a potential 91 percent reduction in cases would have a huge impact on public health because the vaccines could be effective in areas where malaria is more prevalent."
Malaria is caused by a group of parasites that have a complex life cycle, spending time in the mosquito midgut and salivary glands, in the human liver, and circulating in human blood, where they cause the disease.
The team tested two types of vaccines: those that prevent mosquitoes from transferring the parasites, called transmission-blocking vaccines (TBVs), and those that prevent the parasite from infecting the liver, termed pre-erythrocytic vaccines (PEVs).
RTS,S is the world's first PEV malaria vaccine that has been shown to provide partial protection against malaria in young children by blocking infection of the liver. However, its maximum efficacy is under 50 percent (i.e., it reduces cases by around 50 percent).
There are currently several types of transmission-blocking vaccines in early trials, which are thought to reduce the number of parasites in the mosquito salivary glands. Their efficacy typically ranges from around 50 percent to 95 percent.
It has been assumed that combining these vaccines would increase their efficacy, but it has never been tested until now. The team found that when a partially effective PEV was combined with the most effective transmission-blocking vaccine, the efficacy was around 91%.
The team also found that combining any of the two types of vaccines improved efficacy of the mixture more than might be expected from the single efficacy of each vaccine separately.
Dr. Morven Roberts, program manager for parasites and neglected tropical diseases at the MRC, said, "While these findings are in the preliminary stages, they're valuable as they shed light on optimizing strategies for preventing malaria. Learning that combining vaccines can dramatically boost efficacy in mice provides another potential tactic for controlling this disease. This is timely research as global health officials work towards WHO targets to eliminate malaria by 2030."
The team will next study how combined vaccines could work in more complex situations. Blagborough said, "In the real world, the vaccine coverage we can achieve -- how many people we can give it to -- is important, as are the local levels of transmission, and how prevalent malaria currently is in that area. We plan to use a combination of rodent experiments and computer modelling to help us estimate effectiveness requirements for future vaccines."
The efficacy of current lead malaria vaccines is known to reduce over time after vaccines are administered, so the team will also investigate how combined vaccines perform in the long term.
Source: Imperial College London
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.