A recent study conducted at the University of Tampere, Tampere University of Technology, Pirkanmaa Hospital District and Fimlab in Finland has concluded that an electronic nose (eNose) can be used to identify the most common bacteria causing soft-tissue infections.
The eNose can be used to detect the bacteria without the prior preparation of samples, and the system was capable of differentiating methicillin-resistant Staphylococcus aureus (MRSA) from methicillin-sensitive Staphylococcus aureus (MSSA).
Skin and soft-tissue infections are common diseases that need medical treatment. Their diagnosis is usually based on bacterial cultures, but in uncomplicated cases the diagnosis may be made directly based on the clinical presentation of the disease. However, this may lead to empirical antibiotic treatments, i.e. treatments without a specific diagnosis, which may result in longer treatment times, adverse effects and increased costs.
"Our aim was to create a method for the rapid diagnosis of soft tissue infections. If we had such a method, treatment could be started in a timely manner and targeted to the relevant pathogen directly. This would reduce the need for empirical treatments and shorten diagnostic delays," says doctoral researcher Taavi Saviauk from the faculty of medicine and life sciences at the University of Tampere.
"The portable eNose device we used does not require laboratory conditions or special training, so it is well suited for outpatient use. The results of this study are a significant step towards our goal," Saviauk continues.
An electronic nose is a device that produces "an olfactory profile" for each molecular compound in the air. The results are analyzed by a computer and the system is programmed to differentiate between different compounds.
The research group conducting the study has previously shown how an eNose can be successfully used to differentiate prostate cancer from benign prostatic hyperplasia using a urine sample and distinguish between the various bacteria that cause urinary tract infections.
Reference: Saviauk T, et al. Electronic Nose in the Detection of Wound Infection Bacteria from Bacterial Cultures: A Proof-of-Principle Study.
European Surgical Research 2018;59:1-11.
Source: University of Tampere
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.