Female mice infected with two different strains of the flu exhibit changes to the structure and function of the hippocampus that persist for one month after infection, according to new research published in JNeurosci.
Although influenza is considered to be a respiratory disease, it has been associated with neurological symptoms in some cases. However, the long-term effects of flu on the brain have not been studied.
Martin Korte and colleagues investigated three different flu strains (H1N1, H3N2, H7N7) in mice. Two of these strains, H3N2 and H7N7, caused memory impairments that were associated with structural changes to neurons in the hippocampus. The infections also activated the brain's immune cells in this region for an extended period and altered the expression of genes implicated in disorders including depression, autism and schizophrenia. These findings suggest that some strains of the flu may pose a threat to healthy brain function.
Source: Society for Neuroscience
Pioneering Advances in Sterilization: The Future of Infection Control
November 28th 2024Germitec, STERIS, ASP, and Zuno Medical are pioneering sterilization advancements with groundbreaking technologies that enhance SPD workflows, improve patient safety, and redefine infection control standards.
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.