Scientists have created a fluorescent probe that can tag and illuminate single specimens of the bacteria that cause tuberculosis (TB), one of the world's most problematic infectious diseases. The probe, along with a microfluidic chip that counts TB bacteria, could find applications in fields ranging from diagnosis of TB to assessing the effectiveness of novel therapies.
TB, caused by the bacterium Mycobacterium tuberculosis (Mtb), is a highly contagious disease that infects the lungs and causes chronic coughs, fever, and weight loss. The disease is a massive burden on health systems worldwide, costing the world over $21 billion a year and being responsible for approximately two million deaths annually. Efforts to rein in the malady have been hindered by the HIV epidemic, the spread of antibiotic resistance and the fact that the most common diagnostic techniques for TB are decades old. The bacteria can develop antibiotic resistance in part due to the presence of an enzyme named BlaC that breaks down the structure of many common antibiotics.
A team led by Yunfeng Cheng exploited this apparent strength by designing a molecule that is activated by BlaC and attaches to another enzyme named DprE1. The probe, named CDG-DNB3, produces a bright green color within one hour after activation by BlaC, allowing for rapid labeling of both single and multiple Mtb bacteria. The authors tested the probe in a weakened variant of TB named BCG and found the probe could distinguish between live bacteria and dead bacteria, as well as between BCG and 43 related nontuberculosis mycobacterial species.
Chang et al. also created a chip using microfluidics technology that accurately counted bacteria within BCG samples labeled with CDG-DNB3 as they passed through a detection window.
Source: American Association for the Advancement of Science
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.