Many a holiday is ruined by food poisoning, frequently caused by the bacterium Campylobacter jejuni. Although Campylobacter infections are rarely life-threatening they are extremely debilitating and have been linked with the development of Guillain-Barré syndrome, one of the leading causes of non-trauma-induced paralysis worldwide.
Campylobacter jejuni is well adapted to life in the guts of animals and birds, where it is often found in very high levels. However, to infect humans it also needs to be able to survive outside the gut, on the surface of meat that will be eaten by humans. It is known that C. jejuni cannot grow under normal atmospheric conditions the levels of oxygen are too high for it so how it survives was until recently unknown. The mystery has now been solved by Friederike Hilbert and colleagues at the Institute of Meat Hygiene, Meat Technology and Food Science of the University of Veterinary Medicine, Vienna.
The surface of meat harbors a number of species of bacteria that fortunately are rarely harmful to humans, although they are associated with spoilage. It seems possible that the various species interact and Hilbert hypothesized that such interactions might help bacteria such as Campylobacter jejuni survive under hostile, oxygen-rich conditions. She thus tested the survival of C. jejuni in the presence of various meat-spoiling bacteria. When incubated alone or together with bacteria such as Proteus mirabilis or Enterococcus faecalis, Campylobacter survived atmospheric oxygen levels for no longer than 18 hours. However, when incubated together with various strains of Pseudomonas, Campylobacter were found to survive for much longer, in some cases over 48 hours, which would be easily long enough to cause infection.
There were differences in the extent of prolonged survival depending on the sources of the Campylobacter analysed but all isolates of all strains clearly survived significantly longer in the presence of Pseudomonas bacteria than when cultured alone. And the Campylobacter cells did not change shape when cultured together with Pseudomonas under oxygen-rich conditions, unlike when they were cultured alone, providing further indications of an interaction between the species. Interestingly, there is no evidence that the Pseudomonas benefit at all from the interaction, although they effectively save the lives of the Campylobacter.
Hilbert's findings show clearly that the presence of Pseudomonas bacteria is responsible for significantly enhanced survival of the disease-causing Campylobacter bacteria on the surface of meat. The results have implications for the control of meat, especially poultry, destined for human consumption. As Hilbert says, "On the basis of this study it should be possible to elucidate new mechanisms for limiting the level of Campylobacter on chicken meat and thus the incidence of food poisoning could be much reduced."
The paper "Survival of Campylobacter jejuni under Conditions of Atmospheric Oxygen Tension with the Support of Pseudomonas spp." by Friederike Hilbert, Manuela Scherwitzel, Peter Paulsen and Michael P. Szostak is published in the September issue of the Journal Applied and Environmental Microbiology (Vol. 76, 5911-5917). The work was funded in part by the European Commission via an FP6 project, PoultryFlorGut (contract no. FOOD-CT-2005-007076).
Redefining Competency: A Comprehensive Framework for Infection Preventionists
December 19th 2024Explore APIC’s groundbreaking framework for defining and documenting infection preventionist competency. Christine Zirges, DNP, ACNS-BC, CIC, FAPIC, shares insights on advancing professional growth, improving patient safety, and navigating regulatory challenges.
Addressing Post-COVID Challenges: The Urgent Need for Enhanced Hospital Reporting Metrics
December 18th 2024Explore why CMS must expand COVID-19, influenza, and RSV reporting to include hospital-onset infections, health care worker cases, and ER trends, driving proactive prevention and patient safety.
Announcing the 2024 Infection Control Today Educator of the Year: Shahbaz Salehi, MD, MPH, MSHIA
December 17th 2024Shahbaz Salehi, MD, MPH, MSHIA, is the Infection Control Today 2024 Educator of the Year. He is celebrated for his leadership, mentorship, and transformative contributions to infection prevention education and patient safety.
Pula General Hospital Celebrates Clean Hospitals
December 16th 2024Learn how Pula General Hospital in Croatia championed infection prevention and environmental hygiene and celebrated Clean Hospitals Day to honor cleaning staff and promote advanced practices for exceptional patient care and safety.
Understanding NHSN's 2022 Rebaseline Data: Key Updates and Implications for HAI Reporting
December 13th 2024Discover how the NHSN 2022 Rebaseline initiative updates health care-associated infection metrics to align with modern health care trends, enabling improved infection prevention strategies and patient safety outcomes.