Two types of human antibodies that target different parts of the Ebola virus synergize their antiviral effects by inhibiting different steps of infection, according to a study published August 23 in the open-access journal PLOS Pathogens by Philipp Ilinykh and colleagues from the University of Texas Medical Branch, Vanderbilt University, and Ragon Institute. These new insights into how the human immune system protects against Ebola infections could lead to the development of effective antibody-based therapies.
The unprecedented Ebola virus epidemic in West Africa from 2013 to 2016 resulted in more than 11,000 human fatalities, demonstrating the urgent need for treatments against this virus and related highly pathogenic filoviruses. Despite intense international collaborative efforts, there is still no licensed therapeutic available against filovirus disease. Further progress in the development of effective antibody-based therapies for filovirus infections requires a better understanding of the mechanism underlying their protective effect. Although the human immune system can produce strong antibody responses against filoviruses, the effects on multiple steps of filovirus infection have not been clear.
To address this gap in knowledge, Ilinykh and colleagues evaluated the mechanisms underlying the antiviral effects of a diverse panel of monoclonal antibodies obtained from several survivors of natural Ebola virus infections. Monoclonal antibodies that targeted either the glycan cap or stem region of the viral glycoprotein interfered with and targeted different steps of filovirus infection. For example, glycan cap-specific antibodies inhibited viral attachment to the cell surface, cell-to-cell transmission and virion budding. By contrast, stem-specific antibodies triggered the activation of natural killer cells and the destruction of infected cells by monocytes and neutrophils.
Taken together, the findings suggest that different types of antibodies exert cooperative effects by blocking distinct steps of filovirus infection. According to the authors, antibody cocktails that combine complementary antiviral effects should be tested in future studies.
Bukreyev adds, "The current approach for treatment of filovirus infections with antibody cocktails tested in animal models utilizes the principle of targeting of non-overlapping epitopes. Our study suggests that possible synergistic effects of antibodies which block various steps of viral replication should be also considered."
Source: PLOS
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.