Effector proteins are the bad guys that help bacterial pathogens do their job of infecting the host by crippling the bodys immune system. In essence, they knock down the front door of resistance and disarm the cells alarm system.
Now, researchers at the University of California, San Diego (UCSD) School of Medicine have identified a novel molecular target for an effector protein called YpkA, one of several effectors of the bacteria Yersinia the pathogen responsible for the Middle Ages Black Death and a virulent form of food poisoning today. Their study will be published online in the May 25 issue of Molecular Cell.
YpkA targets a host protein called Gaq, the messenger that transmits extracellular signals (we are under attack!) into the host cell, so that it can mount a defense.
The alarm signal sent by Gaq is intercepted by YpkA, which sets up a roadblock along several cellular pathways that Gaq uses to deliver the alarm, said lead author Lorena Navarro, PhD, post-doctoral researcher in the lab of the studys principle investigator, Jack E. Dixon, PhD, professor of pharmacology and cellular and molecular medicine at the UCSD School of Medicine.
Identifying this new target is the first step to developing effective strategies for preventing disease, including means to fight antibiotic-resistant strains of Yersinia that could be used in biological warfare, according to Navarro.
The genus Yersinia includes three species of bacteria that are pathogenic to humans: Y. pestis is perhaps the most infamous, being responsible for the bubonic plague (also known as the Black Death), which killed more than 200 million people in the Middle Ages.
This bacterial species could still be a threat today, said Navarro, adding that scientists had isolated an antibiotic-resistant strain of this species. In addition Y. pseudotuberculosis and Y. enterocolitica are big words for nasty, little bugs that cause whats commonly known as food poisoning. All three bacteria species find their way past the bodys immune system through a sophisticated invasion system that injects the effector proteins directly into the host cells cytoplasm.
More than a decade after its discovery, our understanding of YpkA is still incomplete, Navarro said. But Yersinia has maintained YpkA over millions of years, so it must be doing something important. The researchers speculate that YpkA plays an important role in disabling the bodys immune system beyond its previously known role of disrupting the host cells normal structure, which interferes with the cells innate ability to engulf and destroy invading bacteria. The question now becomes, why is Gaq targeted by YpkA?
Additional investigators for the study include Antonius Koller and Susan Taylor, PhD, UCSD professor of chemistry and biochemistry; and Roland Nordfelth and Hans Wolf-Watz of Umeå University in Sweden.
Funding for the research was provided in part by the National Institutes of Health and a University of California Presidents Postdoctoral Fellowship.
Source: UCSD
CDC HICPAC Considers New Airborne Pathogen Guidelines Amid Growing Concerns
November 18th 2024The CDC HICPAC discussed updates to airborne pathogen guidelines, emphasizing the need for masks in health care. Despite risks, the committee resisted universal masking, highlighting other mitigation strategies
Breaking the Cycle: Long COVID's Impact and the Urgent Need for Preventative Measures
November 15th 2024Masking, clean air, and vaccinations are essential in combating COVID-19 and preventing long-term impacts, as evidence mounts of long COVID's significant economic, cognitive, and behavioral effects.
The Critical Role of Rapid Diagnostics in Antibiotic Stewardship
November 6th 2024Rapid diagnostics enhance patient outcomes by enabling prompt, targeted treatments, reducing inappropriate antibiotic use, and combating antimicrobial resistance through informed clinical decisions and stewardship programs.