An annual influenza season forecasting challenge issued by the Centers for Disease Control and Prevention (CDC) provides unique insight into epidemic forecasting, according to a study published in the journal Scientific Reports.
The study, conducted by a large team of researchers, including biocomplexity scientist Matteo Convertino of Japan's Hokkaido University, analysed the forecasts of 14 predictive models submitted by 11 teams to the CDC as part of its 2015-2016 influenza season forecasting challenge.
The CDC launched the annual challenge in 2013, encouraging academics and private industry researchers to forecast the timing, peak, and intensity of the flu season in the US. Previous efforts were directed toward forecasting Dengue fever. The general aim of the challenge is to improve influenza forecasting in order to better inform public health responses to seasonal epidemics and future pandemics.
Results from analyses of the submissions of the 2015-16 season show that forecasting skill, measured using a logarithmic score, was generally highest among the teams and their models for seasonal peak intensity and short-term forecasts, but was generally low for timing of season onset and peak week.
Forecasting skill was higher among teams that had participated in the challenge before, and also among teams that combined more than one model to develop their forecasts. When the researchers combined all team forecasts into a single ensemble model, they found it performed better compared to the results of each individual model.
"The results highlight the continuing challenge of improving forecast accuracy for more seasons and at lead times of several weeks or more; forecasts that would be of even more utility for public health officials," the researchers write. The results show that the CDC forecasting challenge provides unique insight into epidemic forecasting, they say.
The forecasting models used by the teams did provide valuable data, but future forecasts could be further improved as teams gain more experience and by using combined model approaches, they conclude.
"As the only ongoing infectious disease forecasting challenge in the United States, the CDC influenza forecasting challenge sets a model for other infectious diseases by identifying data and resource constraints that limit model development, establishing best practices for forecast submission and evaluation, identifying areas where forecasts can be improved, tying forecasting efforts to real public health needs, and assessing their performance related to those needs," say the researchers.
Source: Hokkaido University
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.