Investigators Examine Clinical Impact of an Antibacterial Examination Glove

Article

Leitgeb, et al. (2013) evaluated the number of bacteria recovered from a stainless steel coupon after touching a pigskin substrate with an examination glove coated on its outside with polyhexanide (PHMB), as compared to the number of bacteria recovered in the same manner with non-coated control gloves.
 
Suspensions containing 1 x 109 colony-forming units of four clinically relevant bacterial species (Enterococcus faecium ATCC #51559; Escherichia coli ATCC #25922; Klebsiella pneumoniae ATCC #4352; and Staphylococcus aureus ATCC #33591) were used to contaminate Gamma-irradiated pigskin substrates. Bacterial recoveries from the pigskin substrate, stainless steel coupons, and each glove swatch were performed. A difference in the bacterial recovery from the stainless steel coupons after touching with coated and uncoated control gloves was measured.

For E. faecium, the coated glove showed a reduction of 4.63 log10 cfu recovery, when compared to control gloves. For E. coli, the coated glove showed 5.48 log10 cfu, for K. pneumoniae 5.03 log10 cfu, and for S. aureus 5.72 log10 cfu recovery, when compared to the non-coated control glove.
 
The researchers concluded that their in-vitro experiment designed to mimic cross-contamination of clinically relevant bacteria in a simulated healthcare setting following glove contact with a contaminated biological surface and cross-transfer to a stainless steel surface has demonstrated that an examination glove coated on its outside surface with PHMB was able to reduce bacterial recovery from a contaminated surface by > 4 log10 cfu, compared to a control non-coated examination glove. These elaborated results may encourage further clinical investigation on the clinical impact of an antibacterial examination glove. Their research was published in Antimicrobial Resistance and Infection Control. 

Reference: Leitgeb J, Schuster R, Eng AH, Yee BN, Teh YP, Dosch V and Assadian O. In-vitro experimental evaluation of skin-to-surface recovery of four bacterial species by antibacterial and non-antibacterial medical examination gloves. Antimicrobial Resistance and Infection Control 2013, 2:27 doi:10.1186/2047-2994-2-27
 

Recent Videos
Meet Jenny Hayes, MSN, RN, CIC, CAIP, CASSPT.
Veterinary Infection Prevention
Andreea Capilna, MD, PhD
Meet the Infection Control Today Editorial Advisory Board Members: Priya Pandya-Orozco, DNP, MSN, RN, PHN, CIC.
Meet Matthew Pullen, MD.
Henry Spratt, Infection Control Today's Editorial Advisory Board member
Antimicrobial Resistance (Adobe Stock unknown)
Rare Disease Month: An Infection Control Today® and Contagion® collaboration.
Lucy S. Witt, MD, investigates hospital bed's role in C difficile transmission, emphasizing room interactions and infection prevention
Related Content