Leitgeb, et al. (2013) evaluated the number of bacteria recovered from a stainless steel coupon after touching a pigskin substrate with an examination glove coated on its outside with polyhexanide (PHMB), as compared to the number of bacteria recovered in the same manner with non-coated control gloves.
Â
Suspensions containing 1 x 109 colony-forming units of four clinically relevant bacterial species (Enterococcus faecium ATCC #51559; Escherichia coli ATCC #25922; Klebsiella pneumoniae ATCC #4352; and Staphylococcus aureus ATCC #33591) were used to contaminate Gamma-irradiated pigskin substrates. Bacterial recoveries from the pigskin substrate, stainless steel coupons, and each glove swatch were performed. A difference in the bacterial recovery from the stainless steel coupons after touching with coated and uncoated control gloves was measured.
For E. faecium, the coated glove showed a reduction of 4.63 log10 cfu recovery, when compared to control gloves. For E. coli, the coated glove showed 5.48 log10 cfu, for K. pneumoniae 5.03 log10 cfu, and for S. aureus 5.72 log10 cfu recovery, when compared to the non-coated control glove.
Â
The researchers concluded that their in-vitro experiment designed to mimic cross-contamination of clinically relevant bacteria in a simulated healthcare setting following glove contact with a contaminated biological surface and cross-transfer to a stainless steel surface has demonstrated that an examination glove coated on its outside surface with PHMB was able to reduce bacterial recovery from a contaminated surface by > 4 log10 cfu, compared to a control non-coated examination glove. These elaborated results may encourage further clinical investigation on the clinical impact of an antibacterial examination glove. Their research was published in Antimicrobial Resistance and Infection Control.Â
Reference: Leitgeb J, Schuster R, Eng AH, Yee BN, Teh YP, Dosch V and Assadian O. In-vitro experimental evaluation of skin-to-surface recovery of four bacterial species by antibacterial and non-antibacterial medical examination gloves. Antimicrobial Resistance and Infection Control 2013, 2:27 doi:10.1186/2047-2994-2-27
Â
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.
CDC HICPAC Considers New Airborne Pathogen Guidelines Amid Growing Concerns
November 18th 2024The CDC HICPAC discussed updates to airborne pathogen guidelines, emphasizing the need for masks in health care. Despite risks, the committee resisted universal masking, highlighting other mitigation strategies
The Importance of Hand Hygiene in Clostridioides difficile Reduction
November 18th 2024Clostridioides difficile infections burden US healthcare. Electronic Hand Hygiene Monitoring (EHHMS) systems remind for soap and water. This study evaluates EHHMS effectiveness by comparing C difficile cases in 10 hospitals with CMS data, linking EHHMS use to reduced cases.
Breaking the Cycle: Long COVID's Impact and the Urgent Need for Preventative Measures
November 15th 2024Masking, clean air, and vaccinations are essential in combating COVID-19 and preventing long-term impacts, as evidence mounts of long COVID's significant economic, cognitive, and behavioral effects.