Allowing sunlight in through windows can kill bacteria that live in dust, according to a study published in the open access journal Microbiome.
Researchers at the University of Oregon found that in dark rooms 12 percent of bacteria on average were alive and able to reproduce (viable). In comparison only 6.8 percent of bacteria exposed to daylight and 6.1 percent of bacteria exposed to UV light were viable.
Fahimipour said, "Humans spend most of their time indoors, where exposure to dust particles that carry a variety of bacteria, including pathogens that can make us sick, is unavoidable. Therefore, it is important to understand how features of the buildings we occupy influence dust ecosystems and how this could affect our health."
Dust kept in the dark contained organisms closely related to species associated with respiratory diseases, which were largely absent in dust exposed to daylight.
The authors found that a smaller proportion of human skin-derived bacteria and a larger proportion of outdoor air-derived bacteria lived in dust exposed to light that in than in dust not exposed to light. This may suggest that daylight causes the microbiome of indoor dust to more strongly resemble bacterial communities found outdoors.
The researchers made eleven identical climate-controlled miniature rooms that mimicked real buildings and seeded them with dust collected in residential homes. The authors applied one of three glazing treatments to the windows of the rooms, so that they transmitted visible, ultraviolet or no light. After 90 days, the authors collected dust from each environment and analysed the composition, abundance, and viability of the bacteria present.
Fahimipour said, "Our study supports a century-old folk wisdom, that daylight has the potential to kill microbes on dust particles, but we need more research to understand the underlying causes of shifts in the dust microbiome following light exposure. We hope that with further understanding, we could design access to daylight in buildings such as schools, offices, hospitals and homes in ways that reduce the risk of dust-borne infections."
The authors caution that the miniature room environments used in the study were exposed to only a relatively narrow range of light dosages. Although the researchers selected light dosages similar to those found in most buildings, there are many architectural and geographical features that produce lower or higher dosages of light that may need additional study.
Source: Biomed Central
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.