Gene transfers are particularly common in the antibiotic-resistance genes of Streptococcus pneumoniae bacteria. When mammals breed, the genome of the offspring is a combination of the parents' genomes. Bacteria, by contrast, reproduce through cell division. In theory, this means that the genomes of the offspring are copies of the parent genome. However, the process is not quite as straightforward as this due to horizontal gene transfer through which bacteria can transfer fragments of their genome to each other. As a result of this phenomenon, the genome of an individual bacterium can be a combination of genes from several different donors. Some of the genome fragments may even originate from completely different species.
Mosaic pneumococcal population structure caused by horizontal gene transfer is shown on the left for a subset of genes. Matrix on the right shows a genome-wide summary of the relationships between the bacteria, ranging from blue (distant) to yellow (closely related). Courtesy of Pekka Marttinen
Gene transfers are particularly common in the antibiotic-resistance genes of Streptococcus pneumoniae bacteria. When mammals breed, the genome of the offspring is a combination of the parents' genomes. Bacteria, by contrast, reproduce through cell division. In theory, this means that the genomes of the offspring are copies of the parent genome. However, the process is not quite as straightforward as this due to horizontal gene transfer through which bacteria can transfer fragments of their genome to each other. As a result of this phenomenon, the genome of an individual bacterium can be a combination of genes from several different donors. Some of the genome fragments may even originate from completely different species.
In a recent study combining machine learning and bioinformatics, a new computational method was developed for modelling gene transfers between different lineages of a bacterial population or even between entirely different bacterial species. The method was used to analyze a collection of 616 whole-genomes of a recombinogenic pathogen Streptococcus pneumoniae.
In the study, several individual genes in which gene transfers were considered particularly common were identified. These genes also included genes causing resistance to antibiotics.
"In the case of antibiotic-resistance genes, the number of gene transfers may be related to how useful these genes are to bacteria and to the resulting selection pressure," says Academy research fellow Pekka Marttinen from the Aalto University Department of Computer Science.
'The study will not provide a direct solution to antibiotic resistance because this would require a profound understanding of how the resistance occurs and spreads. Nevertheless, knowing the extent to which gene transfer occurs between different species and lineages can help in improving this understanding', he explains.
The study was able to show that gene transfer occurs both within species and between several different species. The large number of transfers identified during the study was a surprise to the researchers.
"Previous studies have shown that gene transfers are common in individual genes, but our team was the first to use a computational method to show the extent of gene transfer across the entire genome," Marttinen says. "The method also makes it possible to effectively examine ancestral gene transfers for the first time, which is important in examining transfers between different species."
Molecular Biology and Evolution published the results in February.
Source: Aalto University
Redefining Competency: A Comprehensive Framework for Infection Preventionists
December 19th 2024Explore APIC’s groundbreaking framework for defining and documenting infection preventionist competency. Christine Zirges, DNP, ACNS-BC, CIC, FAPIC, shares insights on advancing professional growth, improving patient safety, and navigating regulatory challenges.
Addressing Post-COVID Challenges: The Urgent Need for Enhanced Hospital Reporting Metrics
December 18th 2024Explore why CMS must expand COVID-19, influenza, and RSV reporting to include hospital-onset infections, health care worker cases, and ER trends, driving proactive prevention and patient safety.
Announcing the 2024 Infection Control Today Educator of the Year: Shahbaz Salehi, MD, MPH, MSHIA
December 17th 2024Shahbaz Salehi, MD, MPH, MSHIA, is the Infection Control Today 2024 Educator of the Year. He is celebrated for his leadership, mentorship, and transformative contributions to infection prevention education and patient safety.
Pula General Hospital Celebrates Clean Hospitals
December 16th 2024Learn how Pula General Hospital in Croatia championed infection prevention and environmental hygiene and celebrated Clean Hospitals Day to honor cleaning staff and promote advanced practices for exceptional patient care and safety.
Understanding NHSN's 2022 Rebaseline Data: Key Updates and Implications for HAI Reporting
December 13th 2024Discover how the NHSN 2022 Rebaseline initiative updates health care-associated infection metrics to align with modern health care trends, enabling improved infection prevention strategies and patient safety outcomes.