Changes in climate, such as rain and drought, can affect the risk of mosquito-borne diseases such as dengue, chikungunya and Zika. An international team comprising the Barcelona Institute for Global Health (ISGlobal) has developed a new tool to predict the impact of droughts and extreme rainfall on the risk of dengue outbreaks.
Over the last years, the Caribbean region has faced a large number of disease outbreaks transmitted by the Aedes mosquito (dengue, chikungunya and Zika). It is also a region with large drought periods, particularly in years with El Niño events. During these dry seasons, many households store water in recipients, which represents ideal breeding sites for mosquitoes. However, few studies have examined the effects of prolonged drought on dengue transmission.
Now, an international team has developed a statistical model for the Caribbean Institute for Meteorology & Hydrology in order to predict dengue outbreaks in Barbados. The methodology is based on previous studies performed for Brazil and Ecuador. Based on temperature and rainfall data, they built a model that predicted monthly dengue cases between 1999 and 2016.
The results, published in PLOS Medicine, show that the tool successfully predicted the months with dengue outbreaks. In particular, the optimal conditions for outbreaks were drought periods followed by a combination of hot conditions and intense rainfall 4 to 5 months after.
Rachel Lowe, lead author and researcher at ISGlobal and the London School of Hygiene & Tropical Medicine, explains, "This is the first statistical model that considers the combined impact of drought and rainfall in disease risk. This is important because climate change is leading to more intense and frequent droughts and hurricanes in the region. This tool is of great value for public health policies since it helps to plan interventions aimed at reducing the risk of dengue and other mosquito-borne diseases."
In fact, this model is expected to contribute to an early warning system in the entire Caribbean region to predict possible outbreaks of mosquito-borne diseases, three months in advance.
Reference: Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study Rachel Lowe, Antonio Gasparrini, Cédric J. Van Meerbeeck, Catherine A. Lippi, Roche Mahon, Adrian R. Trotman, Leslie Rollock, Avery Q. J. Hinds, Sadie J., Ryan, Anna M. Stewart Ibarra. PLOS Medicine. 17 July 2018. https://doi.org/10.1371/journal.pmed.1002613
Source: Barcelona Institute for Global Health (ISGlobal)
Pioneering Advances in Sterilization: The Future of Infection Control
November 28th 2024Germitec, STERIS, ASP, and Zuno Medical are pioneering sterilization advancements with groundbreaking technologies that enhance SPD workflows, improve patient safety, and redefine infection control standards.
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.