The National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), has awarded 14 contracts totaling more than $73 million to fund the Large-Scale Antibody and T Cell Epitope Discovery Program, an initiative aimed at quickly identifying the regions of selected infectious agents that elicit immune reactions. The study of these regions, known as epitopes, promises to uncover targets for new and improved vaccines, therapies and diagnostic tools against potential bioterror agents as well as emerging/re-emerging infectious diseases such as West Nile virus and influenza. NIAID will make information on each newly identified epitope freely available to scientists through a searchable online database currently under development.
Elucidating the basic mechanisms of immune function is a major focus of our biodefense research agenda, says Anthony S. Fauci, MD, director of NIAID. The information generated by this program will deepen our understanding of how components of the immune system defend against certain infectious agents, enabling researchers to design new and improved medical countermeasures.
Researchers have been conducting epitope discovery for many years, but generally on a small scale, says Daniel Rotrosen, MD, director of NIAIDs division of allergy, immunology and transplantation. This initiative, however, will yield new knowledge about antigenic epitopes from a wide variety of microbes, including agents that might be used in a bioterrorist attack.
Epitopes are recognized by the bodys B and T cells, white blood cells that detect an invading pathogen. Each B and T cell is specific for a particular antigen, meaning that each can only bind to a certain foreign molecular structure. This specificity is determined by the receptors on the surface of each cell.
Both B- and T-cell specificity as well as the diverse functions of these cells determine the effectiveness of an immune response. B cells produce antibodies, which bind to target antigens at their epitopes, eliminating the pathogens before infection can spread or marking them for destruction by other cells. T cells either destroy infected target cells, control inflammation or promote powerful antibody responses.
The Large-Scale Antibody and T Cell Epitope Discovery Program will increase knowledge of antibody and T-cell epitopes, which will facilitate the development of new medical tools to detect, prevent and treat infectious diseases. The institutions involved in the program and the principal investigator at each are:
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.