The salivary glands of some tick species could become important research tools for studying how viruses are transmitted from ticks to mammals, and for developing preventive medical countermeasures. Tick salivary glands usually block transmission, but a new study conducted by scientists at the National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes of Health focuses on the role of salivary glands in spreading flaviviruses from black-legged ticks (Ixodes scapularis) to mammals. The new study, published in the journal mBio, advances the researchers' work published in 2017 that established cultured tick organs as a model for flavivirus infection.
Flaviviruses include dengue virus, Zika virus, West Nile virus, yellow fever virus, Powassan virus and several other viruses. Powassan is the only endemic flavivirus spread by ticks in North America, where it is considered a re-emerging virus. Physicians in the United States have reported roughly 100 cases of disease in the past decade, half of them in 2016-17. Powassan virus disease occurs primarily in northeastern states and the Great Lakes region. Though disease caused by Powassan virus is rare--most people who become infected with Powassan virus do not develop any symptoms--the virus can be transmitted very rapidly. Within 15 minutes, an infected tick can transmit the virus to a person or other mammal on which it is feeding. Symptoms of Powassan virus disease can include fever, headache, vomiting, weakness, confusion, loss of coordination, speech difficulties, and seizures. If the virus infects the central nervous system, it can cause brain inflammation and meningitis. Debilitating long-term neurological problems or even death may occur.
In examining the molecular interactions between black-legged ticks and mammals, the NIAID scientists have learned that flaviviruses reproduce in specific locations in tick salivary gland cultures. This could explain why virus transmission occurs so quickly. They also noted that only certain types of salivary gland cells are infected, and they identified a specific tick gene that is involved in infection. Taken together, these findings help identify transmission pathways that potentially could be blocked with a countermeasure. The group also is assessing how viruses grow in cells of the cultured tick midgut to help identify different viruses that can grow in black-legged ticks.
Reference: J Grabowski et al. Dissecting flavivirus biology in salivary gland cultures from fed and unfed Ixodes scapularis (black-legged tick). mBio DOI: 10.1128/mBio.02628-18 (2019).
Source: National Institutes of Health (NIH)
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.
Managing Multimorbidity and Polypharmacy in HIV: Insights From Michelle S. Cespedes, MD, MS
November 20th 2024Michelle S. Cespedes, MD, MS, discusses the challenges of managing multimorbidity and polypharmacy in HIV treatment, emphasizing patient education, evolving guidelines, and real-world insights from the REPRIEVE study.
Longhorn Vaccines and Diagnostics to Showcase Breakthrough Vaccine Data at IDWeek 2024
November 19th 2024Longhorn Vaccines and Diagnostics revealed promising data on universal influenza vaccine LHNVD-110 and AMR sepsis vaccine LHNVD-303 at IDWeek 2024, addressing critical global health challenges.