RARITAN, N.J. -- Scientists at Johnson & Johnson
Pharmaceutical Research and Development (J&JPRD) have identified a novel anti-tuberculosis (TB) compound that works better and faster than the current standard of care in mouse models of TB infection. Also, preliminary studies in healthy human volunteers show that the drug is safe. The findings were published in the Dec. 9, 2004 issue of Science Express, the online version of
the journal Science, and will be published in the Jan. 14, 2005 print edition.
These studies were conducted by scientists at J&JPRD and their colleagues at the
Swedish Institute for Infectious Disease Control in Solna, Sweden, and the
Pitie-Salpetriere School of Medicine in Paris, France.
The compound, called R207910, belongs to a new family of anti-TB agents
called diarylquinolines (DARQ) and appears to have better, and more
differentiated antibiotic properties than currently used drugs for TB,
individually and in combination. R207910 was better at clearing infection from
the lungs of mice than the triple cocktail regimen currently recommended by
the World Health Organization (WHO). Also, cocktail regimens containing
R207910 cleared infection in mice in half the time than the currently used
regimen.
"The drug acts through a novel mechanism of action, and is therefore
active against all multi-drug resistant (MDR) strains of TB tested so far,"
says Koen Andries, DVM, PhD, Distinguished Research Fellow,
Antimicrobial Research at J&JPRD. "A combination including R207910 but
excluding rifampin, one of the current TB drugs, looks especially promising. A
combination excluding rifampin would be compatible with anti-HIV drugs, making
it suitable for treating patients co-infected with HIV and TB."
The World Health Organization (WHO) has declared TB a global health
crisis. TB now infects one-third of the world's population and causes close to
nine million new cases of active TB and 2 million deaths each year.
Unfortunately, many TB strains have become resistant to several antibiotics
used today to treat the disease. More than 300,000 new cases of multi-drug-
resistant TB per year are detected, mainly in Eastern Europe and Central Asia.
"For a long time, there has been a move to find a drug that is safe and
effective and completely cures the patient in a shorter time," Andries says.
"A new drug that could shorten or simplify effective treatment of TB would
dramatically improve TB control programs."
No new anti-TB drugs have been brought into the clinic in the past 40
years, and although doctors have effective first-line TB drugs that work,
there have been difficulties getting these medicines to the patients who need
them as well as effectively treating patients with drug resistant disease.
One out of three people in the world are infected with latent TB. Even in
the developed world, one out of twenty carry the TB bacillus. In some
developing countries, one in two people are infected. A carrier of latent TB
has a 10 percent life-long risk to develop TB. However, in HIV patients, that
risk is 10 percent per year.
"That is the main reason why there is now such a resurgence of
tuberculosis in countries that were previously hit by HIV," Andries says. "The
HIV epidemic has worsened the TB epidemic substantially."
TB is currently treated with a cocktail of antibiotics, including
rifampin, isoniazid, and pyrazinamide, which must be taken for six to nine
months. The TB symptoms disappear after several weeks, and patients begin to
feel healthy. However, to completely clear the infection, they must continue
therapy at least four more months. This is often difficult, especially for
people living in remote areas in developing countries, and discontinuing
treatment prematurely increases the risk of developing resistant bacteria.
To ensure compliance, TB patients are monitored under the DOT (Directly
Observed Treatment) program, with patients taking their cocktail of medicines
each day under the supervision of a healthcare worker.
R207910 Study Findings
"Our findings suggest that at least in mice, R207910 seems to have the
desired properties of simplifying and shortening the treatment duration, and
perhaps, more," says Andries. In bacterial cell cultures, R207910 was
effective against many different strains of mycobacteria, including strains
that are resistant to other drugs. The drug is bactericidal, meaning that it
kills the TB bacilli.
In mouse models, the studies showed that a cocktail regimen containing
this compound reduced bacterial load after one month to the same level as the
currently used regimen after two months of treatment, shortening normal
treatment time by 50 percent. After two months treatment with the R207910
containing cocktail, no TB bacilli could be isolated from the lungs anymore, a
finding that the French group that did those studies called "unprecedented".
The mouse studies also show that this new compound quickly enters the
bloodstream and is actually concentrated in lung cells-which harbour the TB
bacilli-killing the bacilli soon after they enter the body. Also, R207910
lingers in the body for days continuing to kill bacilli even when administered
only once a week in mice.
R207910 is unique in the way it works. The compound attacks an enzyme
called ATP synthase, the energy source for the bacterium. Given its new
mechanism of action and apparent impact on drug resistant strains of TB,
according to Andries, R207910 could lead to a shift in the current treatment
paradigm for tuberculosis. "Preliminary data show R207910 has the desired
properties we need and holds a great deal of promise," he said.
However, Koen added, considerable work needs to be done to fully determine
this compound's clinical potential. Since the compound seems to be safe and
well tolerated in Phase I studies with healthy human volunteers, R207910 will
now be tested in humans with active pulmonary TB.
Andries' coauthors are Peter Verhasselt, Hinrich Gohlmann, Jean-Marc
Neefs, Hans Winkler, Jef Van Gestel, Philip Timmerman, and Didier de Chaffoy
at Johnson & Johnson Pharmaceutical Research and Development, LLC in Beerse,
Belgium; Jerome Guillemont at Johnson & Johnson Pharmaceutical Research and
Development in Val de Reuil, France; Min Zhu at Johnson & Johnson
Pharmaceutical Research and Development, LLC in Raritan, N.J.; Ennis Lee, and
Peter Williams at Johnson & Johnson Pharmaceutical Research and Development,
LLC in High Wycome, UK; Emma Huitric and Sven Hoffner at Swedish Institute for
Infectious Disease Control in Solna, Sweden; Emmanuelle Cambau, Chantal
Truffot-Pernot, Nacer Lounis, and Vincent Jarlier at Pitie-Salpetriere School
of Medicine in Paris, France. Nacer Lounis is currently at Johns Hopkins
University School of Medicine in Baltimore, Md.
The study was supported by Johnson & Johnson Pharmaceutical Research and
Development, and animal work in Paris was also supported by annual grants from
Association Francaise Raoul Follereau, INSERM and, Ministere de l'Education
Nationale et de la Recherche.
Source: Johnson & Johnson Pharmaceutical Research & Development
Pioneering Advances in Sterilization: The Future of Infection Control
November 28th 2024Germitec, STERIS, ASP, and Zuno Medical are pioneering sterilization advancements with groundbreaking technologies that enhance SPD workflows, improve patient safety, and redefine infection control standards.
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.