Newswise -- A previously unidentified protein on the surface of intestinal cells is giving Purdue University researchers new clues on how to prevent disease.
The scientists believe their results eventually could lead to a way to prevent foodborne Listeria monocytogenes infection, which has a 20 percent fatality rate, as well as other diseases. The study of the bacteria is reported in the February 2004 issue of the journal Infection and Immunity.
"This research reveals a detailed mechanism that allows interaction of Listeria with a cell-surface protein, or receptor, on intestinal cells," said Arun Bhunia, a Department of Food Science microbiologist. "Knowing the entryway into the cell will allow us in the future to develop a method to prevent that interaction."
Jennifer Wampler, a postdoctoral student and lead author of the study, said, "Listeria often is implicated in patients with weakened immune systems, so we think that this research could also give us clues as to how other diseases work. This receptor is not unique for Listeria, so it also could be used by other organisms to take advantage and get inside a host cell to cause disease."
Bacteria have proteins, called ligands, that bind with a protein molecule, or receptor, on cells in the body, which is like placing a key in a lock. This interaction opens the door that leads to a complicated series of biochemical reactions. These reactions allow the pathogen to enter cells, in this case in the intestine, and then move on into the liver, spleen, brain or placenta, causing illness and possibly death.
Listeria is responsible for about 2,500 recorded food-borne illnesses annually in the United States and is the deadliest foodborne disease, according to the Centers for Disease Control and Prevention (CDC). It is especially dangerous for pregnant women, the elderly and those with immuno-comprised diseases such as HIV. The infection can cause meningitis, brain-stem encephalitis and spontaneous abortion.
The Purdue team placed a Listeria protein known to bind with human host cells in a laboratory dish with human intestinal cells. They found that the bacteria's ligand bound with an intestinal cell surface protein, which they identified as heat shock protein 60 (Hsp60).
Heat shock proteins are found in most cells. They are called chaperone proteins because they help other proteins stay organized when cells face any type of stress. Until recently, it was believed these proteins were only found in the mitochondria, the cells' engines.
Now that researchers know that these proteins also are found on cell surfaces and act as receptors, they will begin investigating how to control the infection process.
In the study, Purdue researchers used an anti-Hsp60 antibody, a built-in disease-fighting antibody that reduced Listeria's ability to bind with intestinal cells by 74 percent
"If interaction of these two molecules is the beginning of the infection's intestinal phase pathway that leads to illness, then we need to block them," Bhunia said. "Our focus now is to determine when and under what conditions the bacterium moves from intestinal cells into the system.
"If we understand the mechanism of how bacteria interacts with cells before causing damage and producing systemic illness, this may allow us to formulate a vaccination strategy to prevent the infection."
The Purdue researchers plan to study whether the Hsp60 is more abundant in the intestine and also in people most at risk for Listeria-caused food-borne disease, such as pregnant women or HIV patients, Wampler said. They also want to study what other diseases might use this or a similar pathway to enter the body.
Other researchers on this study were Kwang-Pyo Kim, a doctoral student, and Ziad Jaradat, a former postdoctoral student. Bhunia also is a researcher in the Purdue Center for Food Safety Engineering, a collaboration among the university's schools of Agriculture, Consumer and Family Sciences, Engineering, Veterinary Medicine and the U.S. Department of Agriculture-Agricultural Research Service.
Source: Purdue University
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.