Professor Ryan Donnelly with a large scale of his microneedles. Courtesy of Queen's University
A team of researchers from Queen’s University Belfast, led by Ryan Donnelly, professor of pharmaceutical technology, is developing a new type of skin patch (microarray patch) that administers drugs directly into the bloodstream through thousands of individual “microneedles” which are being tested as a possible answer to the antibiotic resistance crisis.
These “microarray patches” are a discreet, easy-to-use technology that contains an array of tiny projections that painlessly penetrate the top layer of skin to deliver a drug.
Antibiotic resistance represents the biggest threat to health today. Oral administration of antibiotics contributes significantly to development of antibiotic resistance, due to interaction of antibiotics with bacteria inhabiting the human gut. Injection of antibiotics significantly reduces development of resistance amongst gut bacteria relative to oral administration, especially if the antibiotic is predominantly excreted through the kidneys. Accordingly, avoiding antibiotic exposure of the gut bacteria may considerably extend the useful lifespan of existing antibiotics, providing vital time for development of new antibiotics.
Donnelly is a registered pharmacist and researcher from the School of Pharmacy at Queen’s University, whose work focuses on novel approaches to administration of difficult-to-deliver medicines. “One of the biggest problems is that the huge majority of the drugs are taken orally," he says. "This means that a small quantity of the compound often finds its way into the colon, creating the perfect breeding ground for drug-resistant bacteria. However, it is clearly impractical to expect patients to inject themselves at home, especially considering that more than 20 percent of people are needle-phobic. Admitting patients to hospital every time they need an antibiotic would quickly bankrupt healthcare providers.”
Donnelly and his team hope to develop and evaluate a unique antibiotic patch that can bypass the gut bacteria and extend the useful lifespan of currently-available antibiotics. On the surface of the antibiotic patch will be tiny needles that painlessly pierce the skin, turning into a jelly-like material that keeps the holes open and allows delivery of antibiotics into the skin for absorption into the bloodstream, thus bypassing the gut bacteria.
Donnelly comments, “We hope to show that this unique antibiotic patch prevents resistance development. If we are successful, this approach will significantly extend the lifespan of existing antibiotics, allowing time for development of the next generation of antibiotics. In doing so, this work has the potential to save many lives.”
Placebo patches have already been successfully tested on ten volunteers in a study published in the International Journal of Pharmaceutics. The next step is to show that they can deliver the correct dose of antibiotics, before testing them against drugs in capsule form.
“For the first time, we’re in control of the rate at which medicine goes into the skin,” Donnelly adds. “I started thinking: what are the big health challenges we can use this to address? There probably isn’t a bigger health challenge today than antibiotic resistance.”
Scientists hope that the drug technology could be used to treat bacterial infections within five years following further tests.
Donnelly says, “This exciting project is very much in line with the research ethos of Queen's University, which is centered on Global Challenges. Antibiotic resistance remains a global health emergency. Antibiotic resistance leads to longer hospital stays, higher medical costs and increased mortality. With this discovery, we hope to change the lives of people across the world.”
The Wellcome Trust, Britain’s largest medical research charity, will donate £900,000 to the project next year.
Source: Queen's University Belfast
Undermining Public Health: Nearly 1300 Cut From CDC With More to Come
February 14th 2025The Trump administration’s decision to terminate nearly 1,300 CDC employees weakens America’s public health defenses, jeopardizes critical research, and endangers the nation’s preparedness for future health crises.
Infection Intel: GermZapp Is the Innovative Hand Hygiene System IPC Needs
February 14th 2025GermZAPP is an affordable hand hygiene system designed to educate, monitor, and encourage adherence in schools, nursing homes, and health care settings, effectively addressing gaps in infection control.
Strengthening Infection Prevention: APIC Urges Support From HHS Secretary Kennedy
February 13th 2025APIC congratulates Secretary Robert F. Kennedy, Jr on his appointment and urges support for infection prevention priorities, including NHSN funding, workforce development, nursing home IPC improvements, medical device cleaning standards, and global health collaboration.
Universities and States Sue NIH Over Funding Cuts, Federal Judge Temporarily Halts Policy
February 13th 2025Twelve universities and 3 education groups filed a lawsuit against the NIH and HHS, challenging a 15% cap on research grant funding. A federal judge issued a temporary restraining order, halting the cuts while litigation proceeds. A hearing is set for February 21, 2025, and states and institutions are pushing for permanent relief.