By targeting a protein found in the saliva of mosquitoes that transmit Zika virus, Yale investigators reduced Zika infection in mice. The finding demonstrates how researchers might develop a vaccine against Zika and similar mosquito-borne viruses, the study authors said. The research was published in Nature Microbiology.
There is no current vaccine or therapy for Zika virus infection, which caused substantial illness, including birth defects, during the 2015 outbreak that impacted over a million people in the Americas. One source of a potential vaccine strategy is the Aedes aegypti mosquito that carries and transmits the virus. A Yale research team recently focused on proteins found in the saliva of these mosquitoes and how they might affect Zika transmission.
Led by the section chief for infectious diseases at Yale, Erol Fikrig, the team isolated antibodies from the blood of mice bitten by mosquitoes. They performed a genomic screen to identify mosquito proteins and tested the proteins for their effect in cell culture, as well as in infected mice models, against Zika virus. They pinpointed one protein, AgBR1, that exacerbated Zika infection in mice.
In further experiments, the researchers examined how blocking AgBR1 might influence Zika infection. They developed an AgBR1 antiserum and gave it to mice, which were then bitten by Zika-virus infected mosquitoes. The team observed that the antiserum reduced the level of Zika virus in the animals over time and that it also provided partial protection from full-blown disease and death.
The study shows that antibodies to the mosquito protein can protect animals from Zika virus infection. While more research is needed, these results could lead to a vaccine. "The ultimate goal would be to develop a vaccine that's effective against the virus by targeting a salivary protein," Fikrig said.
Fikrig and his team plan to study additional mosquito proteins to see whether they have a similar effect on infection. If the approach of targeting proteins is confirmed, it could inform the development of vaccines against other mosquito-borne viruses of the same family of flaviviruses, such as those that cause dengue and West Nile disease.
"It might be a new strategy," Fikrig said. "If this protein was important for other flaviviruses, it could be important for other infections."
Other study authors are Ryuta Uraki, Andrew K. Hastings, Alejandro Marin-Lopez, Tomokazu Sumida, Takehiro Takahashi, Jonathan R. Grover, Akiko Iwasaki, David Hafler, and Ruth R. Montgomery.
This work was supported by the Howard Hughes Medical Institute, by grants from the National Institutes of Health, and by the Japan Society for the Promotion of Science Overseas Research Fellowships.
Source: Yale University
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.