Antiretroviral therapy (ART) is usually very effective at suppressing HIV in the body, allowing a person's immune system to recover by preventing the virus from destroying CD4+ T cells. Scientists have now identified a rare, paradoxical response to ART known as extreme immune decline, or EXID. Five individuals evaluated at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, experienced a significant decline in CD4+ T cell levels despite suppression of HIV below detectable levels for more than three years, according to a report published online today in JCI Insight. The research team was led by Irini Sereti, MD, chief of the HIV Pathogenesis Section in NIAID's Laboratory of Immunoregulation, and Andrea Lisco, MD, PhD.
The NIAID researchers found that the immune systems of people with EXID fared even worse than those of another subset of individuals defined as immunological-non-responders, or INRs, who respond inadequately to ART. INR participants consistently taking ART for four years had CD4+ T cell counts that increased on average by 193 cells per microliter (μL) of blood. Participants who responded normally to ART increased their CD4+ T cell count by more than twice that amount. In contrast, the five participants with EXID experienced an average decline of 157 CD4+ T cells/μL while consistently maintaining viral suppression on ART.
According to the NIAID team, there seems to be no single cause of EXID among the five individuals studied. Their analyses revealed that genes influencing immune cell activity and autoimmunity--the immune system attacking a body's own healthy tissue--may play a role. Specifically, two of the individuals with EXID produced antibodies that attacked their own T cells, while two others had overactive cellular immune responses that lead to increased inflammation. All five participants with EXID had HIV strains other than clade B HIV (the most common strain circulating in North America and Europe), indicating that certain combinations of an individual's genes and the HIV strain may be associated with EXID. While EXID is likely an extremely rare response to ART, the researchers indicate that studying this phenomenon may further illuminate CD4+ T cell reconstitution and inflammation in HIV disease and suggest possible treatment strategies for INRs and individuals with EXID.
Reference: Lisco A, et al. Identification of rare HIV-1-infected patients with extreme CD4 T-cells decline despite ART-mediated viral suppression. JCI Insight DOI: 10.1172/jci.insight.127113 (2019).
Source: National Institutes of Health (NIH)
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.