A team of researchers led by RCSI (Royal College of Surgeons in Ireland) has developed a new treatment for the particularly difficult-to-treat bone infection, osteomyelitis.
Funded by Irish Research Council, European Research Council and AMBER, the SFI (Science Foundation Ireland) research centre for materials science, the study is published in the journal Biomaterials.
The new treatment has developed a one-step solution that kills bacteria and promotes bone growth without using antibiotics. To do this, researchers combined copper particles with bioactive glass -- a type of glass used for bone repair - and incorporated it into an implant designed specifically for bone repair.
The copper-doped bioactive glass in the porous scaffold implant attracts blood vessels and bone cells, which accelerates bone repair. The copper ions in the implant also prevent bacteria growth. The ability of a single implant to improve blood flow and enhance bone healing as well as inhibit infection without antibiotic treatment is a significant advancement over most existing treatments.
"Osteomyelitis is notoriously difficult to treat. Further work on the back of this research could lead to the complete development of a single-stage, off-the-shelf treatment. This in turn could reduce the need for antibiotics and bone grafting - thus also addressing issues with antibiotic resistance," said first author Emily Ryan, a recently qualified PhD student in the RCSI Department of Anatomy.
People can develop this bone infection from broken bones, severe tooth decay and deep puncture wounds, among other causes. In the worst cases, osteomyelitis can result in amputations or be fatal.
The current treatment for osteomyelitis:
- Usually involves weeks of high-dose antibiotic therapy
- Often requires removing infected bone tissue through surgery
- May require bone grafting
- Has a failure rate of up to 30 percent
"We are looking forward to developing and testing this treatment for osteomyelitis and for other infections too. This platform system could be further modified and used to deliver a variety of other non-antibiotic antimicrobial metal ion-doped minerals," said principal investigator Fergal O'Brien, professor of bioengineering and regenerative medicine in the RCSI Department of Anatomy, head of the Tissue Engineering Research Group, and deputy director of the AMBER Research Centre.
Source: RCSI
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.