For the first time, researchers have deciphered the near-atomic structure of filaments, called 'pili', that extend from the surface of bacteria that cause traveler's diarrhea. Without pili, these bacteria do not cause disease. Knowing this structural information may lead to the development of new preventive therapies for the disease.
Traveler's diarrhea is an inconvenience to many in the U.S., but worldwide it can be deadly. It produces a watery diarrhea, which can cause life-threatening dehydration in infants or other vulnerable populations. With more than one billion cases each year, hundreds of thousands of deaths can be attributed to this bacterial disease which is caused by enterotoxigenic Escherichia coli (ETEC), invading the small intestine via pili.
Researchers from Boston University School of Medicine (BUSM), University of Virginia and Umeå University used heat to remove the pili from the bacteria and then used an electron microscope to look at the filaments in a near-native state, frozen in a glass-like solid and kept cold using liquid nitrogen. Because pili comprise hundreds of copies of a single protein, they were able to merge information from many pictures to determine a high-quality, three-dimensional view of the filament.
"We anticipate that our new, detailed knowledge of the structure of pili will help in developing vaccines and drugs to prevent and treat traveler's diarrhea. In particular we are excited about a peptide found in saliva that can disrupt unwinding and/or rewinding of pili as a means of inhibiting bacterial adhesion and disease," explained corresponding author Esther Bullitt, PhD, associate professor of physiology and biophysics at BUSM.
These findings appear online in the International Union of Crystallography Journal.
Funding for this study was provided by: Swedish Research Council (grant No. 2013-2379 to Magnus Andersson); Kempestiftelserna (grant to Magnus Andersson); National Institutes of Health, National Institute of General Medical Sciences (grant No. R35GM122510 to Edward Egelman); University of Virginia School of Medicine (bursary to Edward Egelman); School of Medicine, Boston University (bursary to Esther Bullitt); National Institutes of Health (grant No. S10RR025067 and S10-OD018149 to Edward Egelman; grant No. G20-RR31199 to University of Virginia).
Source: Boston University School of Medicine
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.