Using a small and inexpensive biosensor, researchers at UBC Okanagan, in collaboration with the University of Calgary, have built a diagnostic tool that provides healthcare practitioners almost instant diagnosis of a bacterial infection.
The tool is able to provide accurate and reliable results in real-time rather than the two-to-five days required for existing processes that test infections and antibiotic susceptibility.
"Advances in lab-on-a-chip microfluidic technology are allowing us to build smaller and more intricate devices that, in the medical research space, can provide more information for health care practitioners while requiring less invasive sampling from patients," explains Mohammad Zarifi, an assistant professor at UBC Okanagan.
According to healthcare statistics from 2017, every hour of delay in antibiotic treatment increases mortality rates by nearly eight per cent due to infection complications in the bloodstream.
Zarifi, and his research group in the School of Engineering's Microelectronics and Advanced Sensors Laboratory, tested their device by tracking the amount of bacteria present in a variety of samples under various scenarios. The scenarios resembled those encountered in clinical microbiological laboratories.
By sending a microwave signal through the sample, the device quickly and accurately analyzes and then generates a profile of existing bacteria.
The diagnostic tool not only provides a rapid, label-free and contactless diagnostic tool for clinical analysis but it also goes further, says Zarifi.
"The device is able to rapidly detect bacteria and in addition, it screens the interaction of that bacteria with antibiotics," he adds. "The combined results give health care practitioners more information than they currently have available, helping them move forward to determine accurate treatments."
This biosensor, explains Zarifi is a significant step forward in improving the complex antibiotic susceptibility testing workflow and provides a rapid and automated detection of bacteria as well as screening the bacteria proliferation in response to antibiotics.
The research was published in the journal Scientific Reports with financial support from CMC Microsystems and the Natural Sciences and Engineering Council of Canada.
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.