When golden staph (Staphylococcus aureus) enters our skin it can identify the key immune cells and 'nuke' our body's immune response. Now we know how, thanks to an international research group led by dermatologists from the Centenary Institute and the University of Sydney. Using state-of-the art microscopy techniques, the team identified the key immune cells that orchestrate the body's defenders against invading golden staph, and also how the bacteria can target and destroy these cells, circumventing the body's immune response. Golden staph is the multi-drug resistant bacterium that is the scourge of hospitals.
This shows the depletion of macrophages (in green) after injection of S. aureus (orange-red material) into the skin. Normal skin is on the left; infected skin is on the right. Image courtesy of Centenary Institute/Nature Immunology
When golden staph (Staphylococcus aureus) enters our skin it can identify the key immune cells and 'nuke' our body's immune response. Now we know how, thanks to an international research group led by dermatologists from the Centenary Institute and the University of Sydney. Using state-of-the art microscopy techniques, the team identified the key immune cells that orchestrate the body's defenders against invading golden staph, and also how the bacteria can target and destroy these cells, circumventing the body's immune response. Golden staph is the multidrug-resistant bacterium that is the scourge of hospitals.
The details of the study have been published today in Nature Immunology. It also involved researchers from The Univeristy of Sydney's School of Biological Sciences, Monash University, Singapore Immunology Network (A*STAR), and Harvard Medical School.
"Staphylococcus aureus kills many, many people around the world. In fact, more than tuberculosis and AIDS put together. And the skin is its primary entry point into the body, so it important to understand what happens in the skin," says professor Wolfgang Weninger, head of the Immune Imaging Research Program at Centenary and coordinator of the study.
Using techniques they have developed over the past decade, the research team was able to mark the different cells of the immune system with fluorescent tags of different colours. They then introduced bacteria labeled with similar colored tags, and observed the unfolding battle live under a multiphoton microscope.
Source: Centenary Institute, University of SydneyÂ
Â
IDEA in Action: A Strategic Approach to Contamination Control
January 14th 2025Adopting IDEA—identify, define, explain, apply—streamlines contamination control. Infection control professionals can mitigate risks through prevention, intervention, and training, ensuring safer health care environments and reducing frequent contamination challenges.
Balancing Freedom and Safety: When Public Health Mandates Are Necessary
January 9th 2025Public health mandates, such as lockdowns, masking, and vaccination, balance liberty and safety, ensuring critical protections during pandemics like COVID-19 while fostering long-term survival through science.
Long-Term Chronicles: Infection Surveillance Guidance in Long-Term Care Facilities
January 8th 2025Antibiotic stewardship in long-term care facilities relies on McGeer and Loeb criteria to guide infection surveillance and appropriate prescribing, ensuring better outcomes for residents and reducing resistance.
Considering Avian Flu: World Health Organization Expert Warns Against Raw Milk
January 6th 2025Drinking raw milk poses risks of disease transmission, especially with H5N1 outbreaks. Expert Richard J. Webby, PhD, advises against raw cow or goat milk consumption due to its unpredictable and significant risks.