By digging a little deeper, researchers may have found a potential target for reversing the deadly blood infection sepsis.
Scientists at the University of Michigan Health System looked at microRNA, a type of RNA that does not code for a protein itself but that can regulate the expression of other genes and proteins. They found that by attacking the right microRNA they could influence a key trigger of inflammatory diseases such as sepsis.
Traditionally, researchers have gone after a bigger target, attempting to find compounds that directly control inflammatory triggers such as interleukin 6, or IL-6.
"If you can connect all the dots, you can target a single microRNA and impact an inflammatory process like sepsis. But given the role of IL-6 in other diseases, we think this might have broader implications than sepsis for diseases where IL-6 plays a role," says study author Pavan Reddy, MD, associate professor of hematology/oncology at the U-M Medical School.
Results of the study appear in the June 9 issue of Blood.
The researchers looked specifically at dendritic cells, specialized types of cells that are considered the first-responders in an immune response. Dendritic cells are also amongst the most important cells that turn on other immune cells. Using bioinformatics tools, the researchers identified two microRNAs within the dendritic cells that seemed most predominant in regulating IL-6. One, called miR-142-3p, was shown to have a direct link to regulating IL-6, and only IL-6.
The researchers were then able to specifically target miR-142-3p that would block it from influencing IL-6. They found in mice that doing this reduced deaths from sepsis.
"We showed that microRNAs have unique expression profiles in dendritic cells and that miR-142-3p has an important role in dendritic cell response. This suggests targeting microRNAs may be a novel strategy for treating sepsis," says lead study author Yaping Sun, MD, PhD, internal medicine research investigator at the U-M Medical School.
The researchers believe this approach will also hold potential for other inflammatory diseases such as juvenile rheumatoid arthritis, inflammatory bowel disease and graft-vs.-host disease, a frequent complication of bone marrow transplant. More research is needed before any treatments become available to patients.
Additional authors: Sooryanarayana Varambally, Christopher A. Maher, Qi Cao, Peter Chockley, Tomomi Toubai, Chelsea Malter, Evelyn Nieves, Isao Tawara, Peter A. Ward, Arul Chinnaiyan, all from U-M; Yongqing Wang from University of Toledo Medical Center, Ohio
Funding was provided by the National Institutes of Health.
Reference: Blood, Vol. 117, No. 23, pp. 6172-6183, June 9, 2011.
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.