Hepatitis C virus (HCV) infections have increased during the past decade but little is known about geographic clustering patterns. Stopka, et al. (2017) used a unique analytical approach, combining geographic information systems (GIS), spatial epidemiology, and statistical modeling to identify and characterize HCV hotspots, statistically significant clusters of census tracts with elevated HCV counts and rates. The researchers compiled socio-demographic and HCV surveillance data (n = 99,780 cases) for Massachusetts census tracts (n = 1464) from 2002 to 2013. They used a five-step spatial epidemiological approach, calculating incremental spatial autocorrelations and Getis-Ord Gi* statistics to identify clusters. They conducted logistic regression analyses to determine factors associated with the HCV hotspots.
The researchers identified nine HCV clusters, with the largest in Boston, New Bedford/Fall River, Worcester and Springfield (p < 0.05). In multivariable analyses, they found that HCV hotspots were independently and positively associated with the percent of the population that was Hispanic (adjusted odds ratio [AOR]: 1.07; 95% confidence interval [CI]: 1.04, 1.09) and the percent of households receiving food stamps (AOR: 1.83; 95% CI: 1.22, 2.74). HCV hotspots were independently and negatively associated with the percent of the population that were high school graduates or higher (AOR: 0.91; 95% CI: 0.89, 0.93) and the percent of the population in the “other” race/ethnicity category (AOR: 0.88; 95% CI: 0.85, 0.91).
The researchers identified locations where HCV clusters were a concern, and where enhanced HCV prevention, treatment and care can help combat the HCV epidemic in Massachusetts. GIS, spatial epidemiological and statistical analyses provided a rigorous approach to identify hotspot clusters of disease, which can inform public health policy and intervention targeting. Further studies that incorporate spatiotemporal cluster analyses, Bayesian spatial and geostatistical models, spatially weighted regression analyses, and assessment of associations between HCV clustering and the built environment are needed to expand upon our combined spatial epidemiological and statistical methods.
Reference: Stopka TJ, et al. Identifying and characterizing hepatitis C virus hotspots in Massachusetts: a spatial epidemiological approach. BMC Infectious Diseases. 2017;17:294
Redefining Competency: A Comprehensive Framework for Infection Preventionists
December 19th 2024Explore APIC’s groundbreaking framework for defining and documenting infection preventionist competency. Christine Zirges, DNP, ACNS-BC, CIC, FAPIC, shares insights on advancing professional growth, improving patient safety, and navigating regulatory challenges.
Addressing Post-COVID Challenges: The Urgent Need for Enhanced Hospital Reporting Metrics
December 18th 2024Explore why CMS must expand COVID-19, influenza, and RSV reporting to include hospital-onset infections, health care worker cases, and ER trends, driving proactive prevention and patient safety.
Announcing the 2024 Infection Control Today Educator of the Year: Shahbaz Salehi, MD, MPH, MSHIA
December 17th 2024Shahbaz Salehi, MD, MPH, MSHIA, is the Infection Control Today 2024 Educator of the Year. He is celebrated for his leadership, mentorship, and transformative contributions to infection prevention education and patient safety.
Pula General Hospital Celebrates Clean Hospitals
December 16th 2024Learn how Pula General Hospital in Croatia championed infection prevention and environmental hygiene and celebrated Clean Hospitals Day to honor cleaning staff and promote advanced practices for exceptional patient care and safety.
Understanding NHSN's 2022 Rebaseline Data: Key Updates and Implications for HAI Reporting
December 13th 2024Discover how the NHSN 2022 Rebaseline initiative updates health care-associated infection metrics to align with modern health care trends, enabling improved infection prevention strategies and patient safety outcomes.