Flagstaff, Ariz., and Rockville, MD -- Scientists have capitalized on genomic data to define novel diagnostic tests and to gain insight into the evolutionary and genetic history of the deadly pathogen Bacillus anthracis (anthrax).
Researchers at Northern Arizona University (NAU), the Translational Genomics Research Institute (TGen) and The Institute for Genomic Research (TIGR) used nearly 1000 single nucleotide polymorphisms (SNPs) to define the genetic and evolutionary types of several anthrax isolates with extremely high resolution.
The results are scheduled for publication online this week by the journal Proceedings of the National Academy of Sciences.
"This level of detail is not possible without whole genome sequences from multiple strains," said the papers senior author Dr. Paul Keim, director of pathogen genomics at TGen and the Cowden Endowed chair of microbiology at NAU. "This work now provides the raw material for highly specific and sensitive tests for anthrax in human cases, animal cases and within the environment. Specific and sensitive tests for this pathogen are needed for effective bio-defense and forensic investigation into previous events."
TIGRs scientists sequenced the genomes of five isolates, or strains, of anthrax and then compared the results of each sequence to detect minute variations (SNPs). TGen and NAU researchers used that data to develop a typing, or identification, system for various anthrax strains.
"This is the first time that a new bacterial typing system has been developed from an analysis of multiple sequenced genomes of the same species," said Dr. Jacques Ravel, who led the sequencing effort at TIGR. "Comparing the sequence of entire microbial genomes is helping scientists unravel the complex evolutionary history of this lethal agent."
The SNPs described in this work were highly stable. Only one SNP was not entirely stable across the entire study, which means that diagnostic and forensic tests developed using this information will have extremely low false positive, or misidentification rates, a crucial criterion for advanced tests. False positives from anthrax environmental tests would have an inordinate impact on public health should an outbreak occur.
The work also shows for the first time that how researchers "discover" DNA fingerprints is crucial to what they can be used for. The selection of anthrax strains for whole genome sequencing was guided by prior work on the large global anthrax collection, which maximized the information that was ultimately obtained from the whole genome sequencing effort. Similar efforts without such forethought would be ineffective at defining major bacterial populations.
This study shows that diverse strains of pathogens will not be recognized unless they are contained within the scope for the discovery process.
"That the genetic relationships of anthrax have been defined to a new level of precision provides a critical step toward future detection of this potential public threat," added Keim. "In addition, this study established a model for other biothreat pathogens, and common public health related diseases such as E. coli, Strep, Staph, and Salmonella."
The National Institutes of Health and the Department of Homeland Security provided funding for this study. The anthrax genome sequencing effort was funded by a contract from the National Institute of Allergy and Infectious Diseases.
Source: The Translational Gemomics Research Institute
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.