Researchers at North Carolina State University have for the first time mapped human disease-causing pathogens, dividing the world into a number of regions where similar diseases occur. The findings show that the world can be separated into seven regions for vectored human diseases – diseases that are spread by pests, like mosquito-borne malaria – and five regions for non-vectored diseases, like cholera.
Interestingly, not all of the regions are contiguous. The British Isles and many of its former colonies, such as the United States and Australia, have similar diseases and are classified in the same vectored and non-vectored regions. But Britain’s former colonies in Africa and Asia contain different diseases and therefore are located in differing regions, suggesting that colonization is just one of a variety of factors, like climate and socio-political status, affecting the prevalence of disease in a specific area.
“This is about more than just the movement of people – climate, history and geography all seem to be important factors in how diseases survive and thrive across the globe,” says Michael Just, a NC State PhD student in plant and microbial biology and lead author of a paper describing the research. “Understanding that not all pathogens are everywhere could have consequences for public health and the global society as a whole.”
The researchers examined the world’s 229 countries for the presence or absence of 301 diseases – 93 vectored and 208 non-vectored. It found two more vectored-disease regions than non-vectored disease regions, which is likely due to the fact that the vectors – the pests that carry disease – sometimes have limited mobility. Think of a warm-weather pest that can’t handle the cold, like the mosquito.
“Researchers have mapped humans, animals and plants and their movement and evolution across the globe, but the things that live on or with us – pests and pathogens, for example – have been largely ignored,” Just said. “This study is a good first step in examining the relationship between people and their pathogens, which could have important human health implications.”
Reference: Just M, et al. Global biogeographic regions in a human-dominated world: the case of human diseases. Published Nov. 21, 2014 in Ecosphere.
Source: NC State University
IDEA in Action: A Strategic Approach to Contamination Control
January 14th 2025Adopting IDEA—identify, define, explain, apply—streamlines contamination control. Infection control professionals can mitigate risks through prevention, intervention, and training, ensuring safer health care environments and reducing frequent contamination challenges.
Balancing Freedom and Safety: When Public Health Mandates Are Necessary
January 9th 2025Public health mandates, such as lockdowns, masking, and vaccination, balance liberty and safety, ensuring critical protections during pandemics like COVID-19 while fostering long-term survival through science.
Long-Term Chronicles: Infection Surveillance Guidance in Long-Term Care Facilities
January 8th 2025Antibiotic stewardship in long-term care facilities relies on McGeer and Loeb criteria to guide infection surveillance and appropriate prescribing, ensuring better outcomes for residents and reducing resistance.
Considering Avian Flu: World Health Organization Expert Warns Against Raw Milk
January 6th 2025Drinking raw milk poses risks of disease transmission, especially with H5N1 outbreaks. Expert Richard J. Webby, PhD, advises against raw cow or goat milk consumption due to its unpredictable and significant risks.