A Rutgers-led team has discovered two genes that make some strains of harmful Staphyloccocus bacteria resistant to treatment by copper, a potent and frequently used antibacterial agent.
The discovery shows that Staphyloccocus aureus can acquire additional genes that promote infections and antibacterial resistance and may open new paths for the development of antibacterial drugs, according to a study in the Journal of Biological Chemistry.
Researchers at Rutgers University-New Brunswick found the two genes in some strains of S. aureus bacteria. The genes protect the germs from copper, which is increasingly used in the global fight against severe infections.
The Staphylococcus aureus bacterium -- a leading cause of serious and life-threatening infections in the United States -- is highly resistant to antibiotics. Some strains of S. aureus have newly acquired genes embedded in their genome in pieces of DNA called transposons. DNA can be transferred from one organism to another, and transposons help the acquired DNA rapidly become a permanent part of the recipient's chromosome.
Transposons aid in the spread of genes that can give rise to bacteria that are resistant to antibiotics and more likely to cause disease. The newly discovered genes are encoded within a transposon.
This process likely contributed to the recent North American epidemic of staph infections, according to Jeffrey M. Boyd, study senior author and associate professor in the Department of Biochemistry and Microbiology in Rutgers' School of Environmental and Biological Sciences.
Copper has been used for thousands of years to sterilize wounds and drinking water, and hospitals recently began using it against bacteria found on medical instruments and other surfaces. But the two newly discovered genes, named copB and copL, encode proteins that help remove copper from S. aureus cells and prevent it from entering.
The genes may promote the survival of S. aureus in settings, such as in hospitals, that could lead to infections - and/or they may lead to S. aureus strains with higher copper resistance.
S. aureus bacteria live on skin. They are a leading cause of serious and life-threatening infections partly because many strains of S. aureus, such as MRSA and VRSA, are highly resistant to antibiotics.
Rutgers scientists, in collaboration with scientists at the University at Buffalo, also revealed the 3D structure of the copL protein in the B. subtilis bacterium, a relative of S. aureus, using nuclear magnetic resonance (NMR) methods. Those methods were also used to identify the area where copper binds to the surface of the protein.
"This structure provides the basis for rational drug design and could lead to a novel path for antibacterial drug discovery," said co-author Gaetano T. Montelione, Jerome and Lorraine Aresty Chair and a Distinguished Professor in the Department of Molecular Biology and Biochemistry in the School of Arts and Sciences. He is also affiliated with the Center for Advanced Biotechnology and Medicine.
The study was conducted mainly by Rutgers students Zuelay Rosario-Cruz, Nourhan Daigham and Hassan Al-Tameemi, together with University at Buffalo (UB) staff scientist Alexander Eletsky. Rutgers Professor Peter Kahn and staff scientist G.V.T. Swapna, together with UB Distinguished Professor Thomas Szyperski, also contributed.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.