Scientists have discovered a new way for our immune system to combat the elusive virus responsible for cold sores: Type 1 herpes simplex (HSV-1). As reported in the advance online edition of Nature Immunology, a group of virus hunters from the Université de Montréal, in collaboration with American colleagues, have identified a cellular process that seeks out and fights herpes. The five-year study, partially supported by the Canadian Institutes of Health Research, was a joint project with Washington University and Pennsylvania State University.
"Once human cells are infected with Type 1 herpes simplex, the virus comes back because it hides and blocks protection from our immune system," says Luc English, the study's lead author and a doctoral student at the Université de Montréal's Department of Pathology and Cell Biology. "For the first time, our research team has indentified a combative cellular mechanism in this game of hide-and-seek."
"We've found that the nuclear membrane of an infected cell can unmask Type 1 herpes simplex and stimulate the immune system to disintegrate the virus," says English.
The team made its discovery while conducting various tests in HSV-1 infected mice cells. They replicated environments when Type 1 herpes simplex thrives, namely periods of low-grade fever between 38.5 to 39 degrees, and found that herpes-fighting mechanisms were unleashed.
The research team now plans to study how activation of the herpes-combating cellular process could be applied to other illnesses. The outcome could hasten the development of therapies to prevent other immune-evading bacteria, parasites and viruses. "Our goal is to further study the molecules implicated in this mechanism to eventually develop therapies against diseases such as HIV or even cancer," says English.
According to Dr. Michel Desjardins, senior author and a professor in the Department of Pathology and Cell Biology at the Université de Montréal, treatment options might be imaginable in a decade. "Now that we've identified the novel mechanism in cells that activate immune response to Type 1 herpes simplex, scientists are one step closer to creating new treatments that can activate the defense against this and other viruses," says Desjardins. "While it may not be possible to completely eradicate Type 1 herpes simplex in people who are already infected, at the very least, future therapies may be able to keep the virus in its dormant state."
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.
Phage Therapy’s Future: Tackling Antimicrobial Resistance With Precision Viruses
April 24th 2025Bacteriophage therapy presents a promising alternative to antibiotics, especially as antimicrobial resistance continues to increase. Dr. Ran Nir-Paz discusses its potential, challenges, and future applications in this technology.