Researchers from the New York Institute of Technology (NYIT) have discovered bacteriophages, viruses that infect bacteria, living in their kitchen sponges. As the threat of antibiotic resistance increases, bacteriophages, or phages for short, may prove useful in fighting bacteria that cannot be killed by antibiotics alone. The research is presented at ASM Microbe, the annual meeting of the American Society for Microbiology.
A kitchen sponge is exposed to all kinds of different microbes, which form a vast microbiome of bacteria. Phages are the most abundant biological particles on the planet and are typically found wherever bacteria reside. With this understanding, kitchen sponges seemed a likely place to find them.
Students in a research class isolated bacteria from their own used kitchen sponges and then used the bacteria as bait to find phages that could attack it. Two students successfully discovered phages that infect bacteria living in their kitchen sponges. "Our study illustrates the value in searching any microbial environment that could harbor potentially useful phages," said Brianna Weiss, a life sciences student at New York Institute of Technology.
The researchers decided to "swap" these two phages and see if they could cross-infect the other person's isolated bacteria. Consequently, the phages did kill the other's bacteria. "This led us to wonder if the bacteria strains were coincidentally the same, even though they came from two different sponges," said Weiss.
The researchers compared the DNA of both isolated strains of bacteria and discovered that they were both members of the Enterobacteriaceae family. These bacteria belong to a rod-shaped group of microbes commonly found in feces, where some cause infections in hospital settings. Although the strains are closely related, when performing biochemical testing they found chemical variations between them.
"These differences are important in understanding the range of bacteria that a phage can infect, which is also key to determining its ability to treat specific antibiotic-resistant infections," said Weiss. "Continuing our work, we hope to isolate and characterize more phages that can infect bacteria from a variety of microbial ecosystems, where some of these phages might be used to treat antibiotic-resistant bacterial infections."
This project began as part of an undergraduate research class with seven students at the New York Institute of Technology (NYIT) in Old Westbury, N.Y. The course was funded through internal grants provided by (NYIT), which also supported our later work to further characterize the isolated bacteria and bacteriophages. This second phase of our work will be presented on a poster at ASM Microbe on June 23, 2019.
Source: American Society for Microbiology
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.