Study Says Two Wastewater Treatment Plants in China Fail to Kill Superbugs

Article

Tests at two wastewater treatment plants in northern China revealed antibiotic-resistant bacteria were not only escaping purification but also breeding and spreading their dangerous cargo. Joint research by scientists from Rice, Nankai and Tianjin universities found superbugs carrying New Delhi Metallo-beta-lactamase (NDM-1), a multidrug-resistant gene first identified in India in 2010, in wastewater disinfected by chlorination. They found significant levels of NDM-1 in the effluent released to the environment and even higher levels in dewatered sludge applied to soils.

Scientists from Rice, Nankai and Tianjin universities have found signs of drug-resistant bacteria in treated wastewater plants in northern China. Their study suggested the dangerous bacteria were not only escaping purification but also breeding in the treatment plants. Photo courtesy of Yi Luo/Nankai University


Tests at two wastewater treatment plants in northern China revealed antibiotic-resistant bacteria were not only escaping purification but also breeding and spreading their dangerous cargo. Joint research by scientists from Rice, Nankai and Tianjin universities found superbugs carrying New Delhi Metallo-beta-lactamase (NDM-1), a multidrug-resistant gene first identified in India in 2010, in wastewater disinfected by chlorination. They found significant levels of NDM-1 in the effluent released to the environment and even higher levels in dewatered sludge applied to soils.
 
The study, led by Rice University environmental engineer Pedro Alvarez, appeared this month in the American Chemical Society journal Environmental Science and Technology Letters.
 
Its scary, Alvarez says. Theres no antibiotic that can kill them. We only realized they exist just a little while ago when a Swedish man got infected in India, in New Delhi. Now, people are beginning to realize that more and more tourists trying to go to the upper waters of the Ganges River are getting these infections that cannot be treated.
 
We often think about sewage treatment plants as a way to protect us, to get rid of all of these disease-causing constituents in wastewater. But it turns out these microbes are growing. Theyre eating sewage, so they proliferate. In one wastewater treatment plant, we had four to five of these superbugs coming out for every one that came in.
 
Antibiotic-resistant bacteria have been raising alarms for years, particularly in hospital environments where public health officials fear they can be transferred from patient to patient and are very difficult to treat. Bacteria harboring the encoding gene that makes them resistant have been found on every continent except for Antarctica, the researchers wrote.
 
NDM-1 is able to make such common bacteria as E. coli, salmonella and K. pneumonias resistant to even the strongest available antibiotics. The only way to know one is infected is when symptoms associated with these bacteria fail to respond to antibiotics.
 
In experiments described in the same paper, Alvarez and his team confirmed the microbes treated by wastewater plants that still carried the resistant gene could transfer it via plasmids to otherwise benign bacteria.
 
A subsequent study by Alvarez and his colleagues published this month in Environmental Science and Technology defined a method to extract and analyze antibiotic-resistant genes in extracellular and intracellular DNA from water and sediment and applied it to sites in the Haihe River basin in China, which drains an area of intensive antibiotic use. The study showed plasmids persist for weeks in river sediment, where they can invade indigenous bacteria.
 
It turns out that they transfer these genetic determinants for antibiotic resistance to indigenous bacteria in the environment, so they are not only proliferating within the wastewater treatment plant, theyre also propagating and dispersing antibiotic resistance, Alvarez says. This calls for us to take a look at these breeding grounds for antibiotic-resistant bacteria and how we might be able to create better barriers than chlorination. I think we need to take a serious look at photo-disinfection processes, like ultraviolet disinfection. It has been shown to be more effective on resistant organisms. We also need a better understanding of how these microbes flow through the environment.
 
Lead author Yi Luo is a professor of environmental sciences and engineering at Nankai University, Tianjin, China. Co-authors are Jacques Mathieu, a research scientist at Rice; graduate students Fengxia Yang and Qing Wang of Nankai University; and masters student Daqing Mao of Tianjin University.
 
The National Natural Science Foundation of China, the State Environmental Protection commonweal project and the Ministry of Education Program for New Century Excellent Talents supported the research.
 
Source: Rice University

Recent Videos
Meet Alexander Sundermann, DrPH, CIC, FAPIC.
Veterinary Infection Prevention
Andreea Capilna, MD, PhD
Meet the Infection Control Today Editorial Advisory Board Members: Priya Pandya-Orozco, DNP, MSN, RN, PHN, CIC.
Meet Infection Control Today's Editorial Board Member: Tommy Davis, PhD, ACHE, APIC, BLS
Fungal Disease Awareness Week
Meet Shannon Simmons, DHSc, MPH, CIC.
Meet Matthew Pullen, MD.
Clostridioides difficile  (Adobe Stock 260659307 by gaetan)
Related Content