New data from a study led by researchers from the University of Minnesota Medical School could change how future antimicrobial drug combinations are discovered and developed.
Trimethoprim-sulfamethoxazole is a highly synergistic antimicrobial drug combination that is widely used to treat a variety of bacterial and fungal infections. These drugs are known to act by targeting specific steps in the folate biosynthetic pathway, and their combined activity is far greater than the sum of their individual activities. For the last fifty years it has been presumed that the basis for their synergistic antimicrobial activity was fairly simple--essentially, that the drugs work together by inhibiting sequential steps in a linear biosynthetic pathway.
A new study from Yusuke Minato, PhD, and Anthony D. Baughn, PhD, from the Department of Microbiology and Immunology at the University of Minnesota Medical School, demonstrates that there is an unrecognized cyclic pathway structure within the folate biosynthesis pathway, the target of these drugs, that allows each drug to enhance the activity of the other.
"We now understand how these two antibiotics work together. An overlooked loop structure of the folate biosynthetic pathway is crucial to produce synergistic activity of these two antibiotics," said Minato.
This discovery, recently published as a paper, "Mutual potentiation drives synergy between trimethoprim and sulfamethoxazole" in Nature Communications, has the potential to open new doors for identification of other synergistic drug combinations.
"It tells us the way we can look for other drug combinations that will have similar synergistic activity," said Baughn. "There is a major problem with drug resistance and lack of effective drugs, not just for Escherichia coli where our work was focused, but for pretty much all infectious diseases."
Baughn and Minato hope that the understanding of mechanisms for synergy will lead them and others to more potent drug combinations that can be deployed in the fight against pathogenic microbes as drug resistance becomes increasingly commonplace.
Source: University of Minnesota Medical School
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.