Persistence pays off for bacteria as well as people. Researchers at the Hebrew University of Jerusalem and Rockefeller University in New York have demonstrated the constant presence of antibiotic-tolerant "persistent cells" within bacteria colonies and have shown, through mathematical modeling, how these cells develop into "normal" cells following their survival of even heavy dosages of antibiotics.
The findings have consequences for development of new tactics for overcoming the common problem of resistance by bacteria to medicinal treatment.
It has been known for some time that when an antibiotic is administered to counteract a specific bacteria, not all of the bacterial cells may die. Persistent cells can remain that will reinfect the patient later -- the condition we commonly refer to as relapse. What was not known was the exact nature of these persistent cells nor how they function.
In their research with E. coli bacteria, the Hebrew University and Rockefeller University researchers discovered that persistent cells are a kind of reserve population that is constantly being produced within bacteria, regardless of whether the bacteria are being attacked by an antibiotic or not. These cells are slow-growing and apparently because of their "retarded" or "non-mature" state are not susceptible to antibiotics.
Translating their observations into a mathematical model, the researchers have shown how these persistent cells slowly but surely continue growing until they reach a "normal" growth stage. At that point, the former persistent cells are now themselves susceptible to antibiotic attack.
The work of the researchers professor Nathalie Questembert-Balaban, head of the biophysics laboratories at the Hebrew University Racah Institute of Physics; professor Stanislas Leibler of Rockefeller University; and his students Jack Merrin, Remy Chait and Lukasz Kowalik appeared in a recent issue of Science magazine.
Professor Balaban observes that if the timing could be worked out so that the persistent cells could be "hit" with antibiotics at the point that they reach a normal growth stage, and then perhaps the problem of relapse could be overcome. Alternatively, perhaps further study of the nature of the persistent cells could lead to drugs that would take direct action against them in their initial state.
The discoveries by the Hebrew and Rockefeller universities scientists could also perhaps point in the direction of overcoming the problem of reoccurrence of cancer in patients who have undergone earlier, successful remission.
Source: Hebrew University of Jerusalem
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.