A lung-damaging bacterium turns the body's antibody response in its favor, according to a study published in the Journal of Experimental Medicine.
Researchers show how the body’s antibody response can protect-not destroy-the bacterium Pseudomonas aeruginosa (pictured).
A lung-damaging bacterium turns the body's antibody response in its favor, according to a study published in the Journal of Experimental Medicine.
Pathogenic bacteria are normally destroyed by antibodies, immune proteins that coat the outer surface of the bug, laying a foundation for the deposition of pore-forming "complement" proteins that poke lethal holes in the bacterial membrane. But despite having plenty of antibodies and complement proteins in their bloodstream, some people can't fight off infections with the respiratory bacterium Pseudomonas aeruginosa. And chronic infection can lead to a condition called bronchiectasis, characterized by persistent cough, shortness of breath, and chest pain.
A group of researchers at the University of Birmingham in England now find that the antibody response to Pseudomonas can get in its own way. In a subset of infected bronchiectasis patients with particularly poor lung function, they noticed an abundance of one specific type of antibody, called IgG2, which stripped the blood of its normal bug-killing capacity. The IgG2 proteins bound to extra-long sugars on the bacterial surface, a feature unique to the bugs infecting these patients. When these sugar-specific antibodies were removed, the blood's antibacterial prowess was restored.
Exactly how these IgG2 molecules protect the bug is unclear, but they may lure complement proteins away from more vulnerable parts of the bacterial surface. The discovery of antibodies that protect the bug instead of the person may help to explain why two vaccines based on these extra-long sugars resulted in worse disease in immunized individuals.
Reference: Wells TJ, et al. 2014. J. Exp. Med. doi:10.1084/jem.20132444
Top 7 Infection Control Today Articles of 2024: Insights and Innovations
December 30th 2024From advanced sterilization methods to combating antimicrobial resistance, Infection Control Today’s top articles of 2024 delivered actionable strategies for safer healthcare environments and improved patient outcomes.
Revolutionizing Infection Prevention: How Fewer Hand Hygiene Observations Can Boost Patient Safety
December 23rd 2024Discover how reducing hand hygiene observations from 200 to 50 per unit monthly can optimize infection preventionists' time, enhance safety culture, and improve patient outcomes.
Redefining Competency: A Comprehensive Framework for Infection Preventionists
December 19th 2024Explore APIC’s groundbreaking framework for defining and documenting infection preventionist competency. Christine Zirges, DNP, ACNS-BC, CIC, FAPIC, shares insights on advancing professional growth, improving patient safety, and navigating regulatory challenges.
Addressing Post-COVID Challenges: The Urgent Need for Enhanced Hospital Reporting Metrics
December 18th 2024Explore why CMS must expand COVID-19, influenza, and RSV reporting to include hospital-onset infections, health care worker cases, and ER trends, driving proactive prevention and patient safety.