Scientists have discovered a key 'survival gene' that prevents strains of tuberculosis (TB) from mutating into drug-resistant superbugs. In a joint study published today in the journal Nature Communications, scientists from the Centro Nacional de Biotecnología in Madrid and the University of Sussex in Brighton, report the discovery of a gene called NucS that dramatically reduces mutation rates in mycobacteria -- the infectious microbe which causes tuberculosis (TB).
TB, which is spread from person to person through the air, is one of the top 10 causes of death worldwide with 1.8 million people dying from the disease last year. Drug-resistant strains of TB have already been identified in 105 countries and the researchers involved in this study believe that the identification of a key gene, required to suppress mutation rates in mycobacteria, is an important step towards understanding how 'superbugs' develop.
Using a genetic screen, which involved individually knocking out nearly every gene (11,000 genes) in mycobacteria, and screening whether mutant strains grew on a specific antibiotic (rifampicin), the scientists discovered that a DNA repair enzyme, produced by the NucS gene, dramatically reduces mutations from occurring.
The researchers also discovered that genetic variations in the NucS gene significantly influence the mutation rates in clinically isolated strains of mycobacteria. More work needs to be done, but the scientists believe this discovery could also play a role in understanding the development of antibiotic-resistance in patients already suffering from TB.
Professor Aidan Doherty, from the University of Sussex, said: "The rise of antibiotic resistance is a major threat to global health and, if we are to limit its impact on infectious diseases, we first need to identify the mechanisms that prevent bacteria from mutating in the first place. This knowledge will then enable us to better understand how pathogens develop into 'superbugs'.
"Incredibly, for many years it was believed that mycobacteria lacked any mutation avoidance genes. Therefore, the discovery that the NucS gene reduces the rate at which mutations occur in these pathogens is a crucial first step towards identifying the genetic factors that influence the onset of antibiotic-resistance. This will enable scientists and clinicians to screen for strains that are most likely to develop drug-resistance and figure out strategies to tackle this serious threat."
Professor Jesus Blázquez, from the Centro Nacional de Biotecnología, said, "Not only does this study identify that mutations can be reversed in mycobacteria, it reveals that the loss of this DNA repair process can cause a huge increase in the mutation rates, significantly increasing the likelihood of these pathogens acquiring mutations - which can cause antibiotic resistance. Now we know that that NucS dramatically reduces mutation rates in mycobacteria -- it is vital that we take advantage of this and work towards exploiting this discovery to help doctors and microbiologists to predict and prevent the development of antibiotic resistance during treatments."
Doherty's Laboratory at the University of Sussex has recently been awarded a large grant from the Biotechnology and Biological Sciences Research Council to work, in collaboration with the Blázquez group in Madrid, to further uncover how NucS prevents potentially lethal mutations from arising in mycobacteria.
The study published in Nature Communications is titled, "A non-canonical mismatch repair pathway in prokaryotes."
Source: University of Sussex
Redefining Competency: A Comprehensive Framework for Infection Preventionists
December 19th 2024Explore APIC’s groundbreaking framework for defining and documenting infection preventionist competency. Christine Zirges, DNP, ACNS-BC, CIC, FAPIC, shares insights on advancing professional growth, improving patient safety, and navigating regulatory challenges.
Addressing Post-COVID Challenges: The Urgent Need for Enhanced Hospital Reporting Metrics
December 18th 2024Explore why CMS must expand COVID-19, influenza, and RSV reporting to include hospital-onset infections, health care worker cases, and ER trends, driving proactive prevention and patient safety.
Announcing the 2024 Infection Control Today Educator of the Year: Shahbaz Salehi, MD, MPH, MSHIA
December 17th 2024Shahbaz Salehi, MD, MPH, MSHIA, is the Infection Control Today 2024 Educator of the Year. He is celebrated for his leadership, mentorship, and transformative contributions to infection prevention education and patient safety.
Pula General Hospital Celebrates Clean Hospitals
December 16th 2024Learn how Pula General Hospital in Croatia championed infection prevention and environmental hygiene and celebrated Clean Hospitals Day to honor cleaning staff and promote advanced practices for exceptional patient care and safety.
Understanding NHSN's 2022 Rebaseline Data: Key Updates and Implications for HAI Reporting
December 13th 2024Discover how the NHSN 2022 Rebaseline initiative updates health care-associated infection metrics to align with modern health care trends, enabling improved infection prevention strategies and patient safety outcomes.