Scientists in Cairns (Australia) and Cardiff (Wales) have taken an important first step toward solving two problems that hinder access to vaccines: they need to be kept cool, and no one likes needles.
In the April edition of the Journal of Clinical Investigation, a team led by associate professor John Miles from James Cook University and Cardiff University's professor Andrew Sewell describe how they engineered a new vaccine production platform and built a fully synthetic flu vaccine.
The vaccine protected mice from potentially lethal doses of swine flu and also worked on human cells when tested in the laboratory.
"Theoretically, this prototype synthetic vaccine would not require refrigeration and could sit on the shelf for years without going out of date," Sewell said. "In addition to being expensive, maintaining a cold chain of delivery can be extremely difficult in remote areas of the globe. In hot places without reliable electricity, this can count for the majority of the cost of vaccines, and significant wastage."
Taking the needle out of the equation would also make vaccinations simpler to administer, and a whole lot less frightening.
"To be administered orally, vaccines need to be able to survive the acids and enzymes in our stomachs. A couple - including the polio vaccine - can do this, but most cannot," said Miles, principal research fellow at the Australian Institute of Tropical Health and Medicine.
The team showed the synthetic vaccine was hyper-stable in both stomach acid and human blood, meaning it could be taken orally. Promisingly, it was effective when administered orally to mice.
To build their synthetic vaccine, the team used D-amino acids. "These are mirror images of the L-amino acids that are the building blocks of all proteins," Miles said. "While L-amino acids are common in nature, D-amino acids are rare. We were attracted to them because they're very stable, meaning these compounds are harder to break down."
After trialing D-Amino acids in various combinations, the researchers selected a version that successfully provoked the immune system's T cells to launch a defensive attack, protecting the mice when they were later given swine flu.
"We were very surprised at how flexible the immune system is in recognizing dangerous targets," Miles said. "It can't actually tell the difference between our antigen and a real-world fragment of swine flu. This suggests you can build vaccines out of anything you want as long as they 'look' like the real thing in three dimensions."
While we might be a long way from taking our vaccines orally and at room-temperature, Miles says this proof-of-concept study shows exciting promise.
"We have some further work to do in making these vaccines work across larger populations and against other bugs and possibly cancer," he said. "But what we have now is a promising platform for synthetic vaccine production. We hope these new concepts and advances will help make a significant contribution to health world-wide."
Source: James Cook University
Pioneering Advances in Sterilization: The Future of Infection Control
November 28th 2024Germitec, STERIS, ASP, and Zuno Medical are pioneering sterilization advancements with groundbreaking technologies that enhance SPD workflows, improve patient safety, and redefine infection control standards.
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.