Vaccines and antibodies could be transported and stored without refrigeration by capturing them in tiny silica 'cages,' a discovery which could make getting vital medicines to remote or dangerous places much easier, cheaper and safer.
Vaccines and many other medicines contain proteins which break down and become unusable at room temperatures, meaning they must be kept refrigerated for storage and transportation in a so-called "cold chain." Loss of vaccines through breaks in the cold chain are a serious global public health issue, in particular for mass childhood vaccination programs in the developing world.
Breaks in cold chain storage result in the loss of millions of doses of vaccines each year. But a University of Bath team, working with colleagues at the University of Newcastle, have created a technique which can keep proteins intact at high temperatures up to 100 degrees C, by encasing them in silica cages. Silica, which sand is made from, is non-toxic and inert.
Once the protein has been encased in silica it can be stored or transported without refrigeration before the silica coat can be removed chemically, leaving the proteins unaffected.
The discovery means that vaccines and other important medicines could be transported much more easily, cheaply and safely, especially to remote areas or places lacking infrastructure where the need is often greatest.
The teams call their method ensilication and hope it will solve the costly and often impractical need for a cold chain to protect protein-based products including vaccines, antibodies and enzymes. The research is published in the journal Scientific Reports.
Dr. Asel Sartbaeva from the University of Bath's Department of Chemistry, led the project. She said, "Once the proteins in a vaccine break down and tangle up, it's useless. You can think of it like an egg that's been boiled -- it can't be unboiled.
"So the ability to store and transport proteins at room temperatures or even hotter would remove a major logistical problem for safely delivering vaccines and other medicines to patients around the world.
"We have demonstrated with ensilication that we can simply and reliably keep proteins from breaking down even at up to 100°C, or store them as a powder for up to three years at room temperature without loss of function.
"We're very excited by the potential applications of ensilication and our next steps will be to test our findings on more vaccines, antibodies, antiviral and anti-venom drugs and other biopharmaceuticals."
When a protein in solution is mixed with silica, silicon dioxide binds closely around protein to match its shape and quickly builds up many layers, encasing the protein. A major advantage of this method is that unlike similar techniques it doesn't require freeze-drying, something that around half of all vaccines won't survive intact.
A powder of ensilicated proteins results, and the silica cage enveloping the protein means it can be heated to 100 degrees C or stored at 22 degrees C for at least six months with no loss of function.
The research team tested the method on three proteins; one from a tetanus vaccine, horse hemoglobin and an enzyme from egg white.
The research was funded by The Royal Society, Annett Trust and the Alumni Fund at the University of Bath.
Source: University of Bath
Revolutionizing Infection Prevention: How Fewer Hand Hygiene Observations Can Boost Patient Safety
December 23rd 2024Discover how reducing hand hygiene observations from 200 to 50 per unit monthly can optimize infection preventionists' time, enhance safety culture, and improve patient outcomes.
Redefining Competency: A Comprehensive Framework for Infection Preventionists
December 19th 2024Explore APIC’s groundbreaking framework for defining and documenting infection preventionist competency. Christine Zirges, DNP, ACNS-BC, CIC, FAPIC, shares insights on advancing professional growth, improving patient safety, and navigating regulatory challenges.
Addressing Post-COVID Challenges: The Urgent Need for Enhanced Hospital Reporting Metrics
December 18th 2024Explore why CMS must expand COVID-19, influenza, and RSV reporting to include hospital-onset infections, health care worker cases, and ER trends, driving proactive prevention and patient safety.
Announcing the 2024 Infection Control Today Educator of the Year: Shahbaz Salehi, MD, MPH, MSHIA
December 17th 2024Shahbaz Salehi, MD, MPH, MSHIA, is the Infection Control Today 2024 Educator of the Year. He is celebrated for his leadership, mentorship, and transformative contributions to infection prevention education and patient safety.
Pula General Hospital Celebrates Clean Hospitals
December 16th 2024Learn how Pula General Hospital in Croatia championed infection prevention and environmental hygiene and celebrated Clean Hospitals Day to honor cleaning staff and promote advanced practices for exceptional patient care and safety.