Vaccines and antibodies could be transported and stored without refrigeration by capturing them in tiny silica 'cages,' a discovery which could make getting vital medicines to remote or dangerous places much easier, cheaper and safer.
Vaccines and many other medicines contain proteins which break down and become unusable at room temperatures, meaning they must be kept refrigerated for storage and transportation in a so-called "cold chain." Loss of vaccines through breaks in the cold chain are a serious global public health issue, in particular for mass childhood vaccination programs in the developing world.
Breaks in cold chain storage result in the loss of millions of doses of vaccines each year. But a University of Bath team, working with colleagues at the University of Newcastle, have created a technique which can keep proteins intact at high temperatures up to 100 degrees C, by encasing them in silica cages. Silica, which sand is made from, is non-toxic and inert.
Once the protein has been encased in silica it can be stored or transported without refrigeration before the silica coat can be removed chemically, leaving the proteins unaffected.
The discovery means that vaccines and other important medicines could be transported much more easily, cheaply and safely, especially to remote areas or places lacking infrastructure where the need is often greatest.
The teams call their method ensilication and hope it will solve the costly and often impractical need for a cold chain to protect protein-based products including vaccines, antibodies and enzymes. The research is published in the journal Scientific Reports.
Dr. Asel Sartbaeva from the University of Bath's Department of Chemistry, led the project. She said, "Once the proteins in a vaccine break down and tangle up, it's useless. You can think of it like an egg that's been boiled -- it can't be unboiled.
"So the ability to store and transport proteins at room temperatures or even hotter would remove a major logistical problem for safely delivering vaccines and other medicines to patients around the world.
"We have demonstrated with ensilication that we can simply and reliably keep proteins from breaking down even at up to 100°C, or store them as a powder for up to three years at room temperature without loss of function.
"We're very excited by the potential applications of ensilication and our next steps will be to test our findings on more vaccines, antibodies, antiviral and anti-venom drugs and other biopharmaceuticals."
When a protein in solution is mixed with silica, silicon dioxide binds closely around protein to match its shape and quickly builds up many layers, encasing the protein. A major advantage of this method is that unlike similar techniques it doesn't require freeze-drying, something that around half of all vaccines won't survive intact.
A powder of ensilicated proteins results, and the silica cage enveloping the protein means it can be heated to 100 degrees C or stored at 22 degrees C for at least six months with no loss of function.
The research team tested the method on three proteins; one from a tetanus vaccine, horse hemoglobin and an enzyme from egg white.
The research was funded by The Royal Society, Annett Trust and the Alumni Fund at the University of Bath.
Source: University of Bath
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.