We must treat this strain with the respect it deserves, but we must not panic. There is no doubt that increased infectivity equates with increases in deaths, but it does not mean the vaccines will not work.
There is no doubt that the major news story of the week is that Coronavirus disease 2019 (COVID-19) has mutated. And as the public begins to panic, one must ask: What has really changed? We have known for some time now that the strain, G614D, which devastated the Northeastern United States was different and more infectious than the Wuhan strain. And that SARS-C0V-2 virus can have a plethora of mutations, literally thousands, many of which are being tracked on https://nextstrain.org/.
And then a significant mutation occurred in the Danish mink industry which infected both animals and 12 husbandry workers. Public health officials felt this strain may will be resistant to vaccines. Seventeen million minks were killed to prevent the spread of this mutation.
Kevin Kavanagh, MD
So as I tried to sound the alarm that we need to be both vigilant and strictly follow public health advice, much of our nation was living in a false sense of reality, depending upon herd immunity. The same public which for a large part will not follow public health advice because the infection “only” has a 1% fatality rate and at the same time are now expressing concerns regarding the vaccine because of an extremely rare non-fatal allergic reaction.
And a new more infectious variant has now emerged in Southern England. Its infectivity may have increased by 70%, but initial reports have indicated the severity of illness has not changed. The world has started to almost panic, and finally realizes the dangers of a highly mutable RNA virus.
Yes, we must treat this strain with the respect and diligence it deserves, but we must also not panic. There is no doubt that increased infectivity equates with increases in deaths, but it does not mean the vaccines will not work. Here’s why.
The new mRNA vaccines elicit a myriad of neutralizing antibodies aimed at just the virus’s spike protein (the structure it uses to attach to a plethora of many different types of cells in the body). These include heart, kidney, gastrointestinal and lung. All of which contain the ACE II receptor. To avoid these antibodies the virus has to change its spike protein in such a way that the antibodies do not attach but are still able to bind to the ACE II receptor. This is a difficult task, even for a highly mutable virus.
Currently, the virus has produced mutations to avoid single monoclonal or cocktails of two antibodies and still retaining the ability to cause severe and fatal disease. Obviously, we do not want this to happen. But it is unlikely the virus will be able to avoid the myriad of antibodies produced by the vaccine. As aptly pointed out by Greaney, et al. “…even antibodies targeting the same surface often have distinct escape mutations.” This is a similar situation to the Measles virus, which has had many mutations. None of which could evade the vaccine and still maintain viral infectivity.
And if the virus does find a combination which allows it to still avoid the vaccine and maintain its severity of illness and infectivity, the new mRNA vaccine technology can readily adjust and print out a new vaccine. The current mRNA vaccines are created totally in the laboratory by inserting the spike protein’s mRNA code. It is an automated, relatively fast process which the CEO of BioNTech estimates would take about 6 weeks to accomplish.
It is imperative that we follow public health advice. Just remember what happened to the snow leopards in the Louisville Zoo, they are exceptionally good at enforcing social distancing, but not so good at wearing masks. They caught COVID-19. Thus, you must do both. And be steadfast, since we have to slow down the spread of SARS-CoV-2, so the viruses natural production laboratory does not outstrip the capacity of our pharmaceutical giants.
We have the knowledge on how to stop the virus’s spread and the tools to kill it. The only question is, do we care enough for one another to change our lives for a relatively short period of time so our children and grandchildren can have a bright future?
Resilience and Innovation: The Pivotal Contributions of Black Americans to Health Care and Medicine
February 24th 2025During Black History Month, we honor the resilience and contributions of Black medical professionals in health care. Despite barriers, they have led transformative changes, advocating for equitable access and medical excellence. Recognizing their impact ensures a more inclusive health care future for all.
Prove Your Expertise: The Value of AL-CIP Certification in Infection Prevention
February 24th 2025The Advanced Leadership Certification in Infection Prevention (AL-CIP) validates leadership, expertise, and strategic decision-making in infection control. Learn why top professionals pursue this certification and how it enhances careers, and apply for yours today!
Herpes and Dentistry: A Silent But Serious Concern
February 21st 2025Herpes infections pose significant risks in dentistry. JoAnn Gurenlian, RDH, PhD, presented prevention, treatment, occupational hazards, and a potential breakthrough in gene therapy that could revolutionize herpes management at the Midwinter Meeting.
Chicago Dental Society Honors Drs Joseph Hagenbruch and Mark Lingen for Excellence in Dentistry
February 21st 2025The Chicago Dental Society honored Dr. Joseph Hagenbruch and Dr. Mark Lingen for their leadership, research, and dedication to advancing dentistry and improving oral health care access.
From Sterilization Tech to Infection Control Advocate: Sherrie Busby’s Inspiring Dental Journey
February 20th 2025Sherrie Busby, EDDA, CDSO, CDIPC, shares her journey from dental assisting to infection control advocacy, highlighting her passion for education, her role at Heartland Dental, and her exciting transition to a new chapter.