Whole genome sequencing can quickly isolate the specific strain of bacteria causing an outbreak, identify the source of contamination, and enable rapid infection prevention to stop the spread of infection, according to a study published today. The findings, based on the examination of an outbreak of Pseudomonas aeruginosa in an Australian neonatal unit, appear in Infection Control & Hospital Epidemiology.
“Bacteria, such as P. aeruginosa, have evolved into many strains and frequently contaminate the healthcare environment, which makes it difficult to determine the source of an outbreak and control it using traditional methods,” says Rebecca Davis, MD, the study’s lead researcher. “Whole genome sequencing, determining the organism’s entire DNA sequence in real time, changes that. Our study found this technology allows us to implement rapid-response infection control protocols and stem the outbreak, which is critical for vulnerable patients, such as those in a neonatal intensive care unit.”
Researchers at Royal Prince Alfred Hospital in Sydney investigated an outbreak of P. aeruginosa colonization in babies, as an increase was seen in the numbers of babies carrying this bacteria on their skin. Only one baby, however, had become ill with infection from the bacteria.
During the outbreak, researchers conducted enhanced screening practices for all babies by collecting nasal swabs. They also swabbed common areas that were possible sources of transmission, such as areas in and around sinks, including splash-backs and soap dispensers. They found 18 infants were colonized with the bacteria, which in extreme cases can be fatal.
The investigators performed real-time DNA sequencing on specimens collected from 12 babies and seven environmental locations. They found that all babies except one were colonized by a specific strain of P. aeruginosa, ST253, and that two environmental samples obtained from different sinks also tested positive for the same strain. Upon this discovery, infection control personnel took active measures including isolating the babies infected with P. aeruginosa and cleaning and/or replacing equipment associated with the sink areas that tested positive. No further babies became ill with the bacteria.
“Whole genome sequencing gave us the ability to see that all but one of the babies were infected by the same strain of P. aeruginosa, something that would not have been recognized otherwise,” says Davis. “When trying to stem infection, the ability to exclude a patient from the outbreak is just as important as the recognition of the outbreak itself. Additionally, the thorough information provided about factors of each strain, like antibiotic resistance mutations if present, and the quick processing time make it a superior tool in infection control.”
Reference: Davis R, et al. Whole genome sequencing in real-time investigation and management of a Pseudomonas aeruginosa outbreak on a Neonatal Intensive Care Unit. Infection Control & Hospital Epidemiology. Web (June 8, 2015)
Source: Society for Healthcare Epidemiology of America (SHEA)
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.