Professor Bill Keevil, director of the Environmental Healthcare Unit at the University of Southampton, has presented research into the mechanism by which copper exerts its antimicrobial effect on antibiotic-resistant organisms at the World Health Organization's first International Conference on Prevention and Infection Control (ICPIC).
'New Insights into the Antimicrobial Mechanisms of Copper Touch Surfaces' observes the survival of pathogens on conventional hospital touch surfaces contributes to increasing incidence and spread of antibiotic resistance and infections. Keevil proposes antimicrobial copper surfaces as one way to address this, since they achieve a rapid kill of significant bacterial, viral and fungal pathogens.
He reported studies on dry surfaces with a range of pathogens, concluding that, "Copper's rapid destruction of pathogens could prevent mutational resistance developing and also help reduce the spread of antibiotic resistance genes to receptive and potentially more virulent organisms, as well as genes responsible for virulence. Additionally, copper touch surfaces could have a key role in preventing the transmission of healthcare-associated infections. Extensive laboratory tests have demonstrated copper's antimicrobial efficacy against key organisms responsible for these infections, and clinical trials around the world are now reporting on its efficacy in busy, real-world environments."
The latest trial conducted in intensive care units at three facilities in the United States has shown that the use of antimicrobial copper surfaces in intensive care unit rooms resulted in a 40.4 percent reduction in the risk of acquiring a hospital infection.
The study, funded by the U.S. Department of Defense, was designed to determine the efficacy of antimicrobial copper in reducing the level of pathogens in hospital rooms, and whether such a reduction would translate into a lower rate of infection.
Researchers at the three hospitals involved in the trial Memorial Sloan Kettering Cancer Center in New York, the Medical University of South Carolina (MUSC) and the Ralph H. Johnson VA Medical Center, both in Charleston, S.C. replaced commonly-touched items such as bed rails, overbed tray tables, nurse call buttons and IV poles with antimicrobial copper versions.
Data presented today by trial leader Dr. Michael Schmidt, professor and vice chairman of microbiology and immunology at MUSC, at ICPIC, demonstrated a 97 percent reduction in surface pathogens in rooms with copper surfaces, the same level achieved by "terminal" cleaning: the regimen conducted after each patient vacates a room.
Schmidt notes, "Bacteria present on ICU room surfaces are probably responsible for 35 percent to 80 percent of patient infections, demonstrating how critical it is to keep hospitals clean. The copper objects used in the clinical trial supplemented cleaning protocols, lowered microbial levels, and resulted in a statistically significant reduction in the number of infections contracted by patients treated in those rooms."
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.
Vet IP Roundtable 2: Infection Control and Biosecurity Challenges in Veterinary Care
March 31st 2025Veterinary IPs highlight critical gaps in cleaning protocols, training, and biosecurity, stressing the urgent need for standardized, animal-specific infection prevention practices across diverse care settings.
Invisible, Indispensable: The Vital Role of AHRQ in Infection Prevention
March 25th 2025With health care systems under strain and infection preventionists being laid off nationwide, a little-known federal agency stands as a last line of defense against preventable patient harm. Yet the Agency for Healthcare Research and Quality (AHRQ) is now facing devastating cuts—threatening decades of progress in patient safety.