Dead cells disrupt immune responses and undermine defense against infection, new research has found.
The study, led by scientists at the University of Sheffield, revealed that cells which are programmed to die, a process known as apoptosis, can disrupt the normal function of immune cells, called macrophages. This can impact on how well they respond to wounds and patrol the body to seek out infection.
Our macrophages are needed at wound sites to prevent infection and to aid healing processes, but these white blood cells can also cause and worsen many human diseases, including cancer, heart disease and neurodegenerative disorders.
The findings, published in the journal PLOS Biology, show that immune cells prioritise the clearance of dead cells, which overrides their normal migration to sites of injury, impairing immune responses.
The research, which seeks to understand how immune cells are controlled, could help pave the way for new therapies to manipulate these cells and accelerate healing processes. This study gives scientists new insights into the mechanisms that control immune cells within our bodies, such as how they get to and are kept at sites of injuries.
Dr. Iwan Evans, from the Department of Infection, Immunity and Cardiovascular Disease at the University of Sheffield who co-author of the paper, said, "Billions of cells die within our bodies on a daily basis and many of these are removed and digested by our immune cells.
"If this removal process goes wrong it can lead to damaging autoimmune conditions. Excessive or inappropriate immune responses worsen or cause a very broad range of human diseases from cancer to neurodegeneration.
"This work studies fundamental biological processes that are going on inside our bodies everyday that are necessary to keep us healthy."
The research to investigate the interactions between dying cells and immune cells was conducted using fruit flies which contain macrophage-like cells highly similar to our own immune cells. The new study also uncovered a novel role for a protein called Six-Microns-Under (or Simu) in keeping immune cells at sites of injury. Without this protein the macrophages left wound sites precociously.
Hannah Roddie, fellow co-author of the study and research associate in the Department of Infection, Immunity and Cardiovascular Disease at the University of Sheffield, said, "The study shows that the way fruit fly blood cells respond to injuries and dying cells is even more similar to how our own immune cells respond than previously thought. We are now looking into what signals macrophages use to track down dying cells and how they choose between the dead cells and wounds. We're fascinated to understand how immune cells are kept at the sites of injuries."
Source: University of Sheffield
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
Comprehensive Strategies in Wound Care: Insights From Madhavi Ponnapalli, MD
November 22nd 2024Madhavi Ponnapalli, MD, discusses effective wound care strategies, including debridement techniques, offloading modalities, appropriate dressing selection, compression therapy, and nutritional needs for optimal healing outcomes.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.