Drug-Resistant MRSA Bacteria Here to Stay in Hospital and Community Settings

Article

The drug-resistant bac­te­ria known as MRSA, once con­fined to hos­pi­tals but now wide­spread in com­mu­ni­ties, will likely con­tinue to exist in both set­tings as sep­a­rate strains, accord­ing to a new study.

The pre­dic­tion that both strains will coex­ist is reas­sur­ing because pre­vi­ous pro­jec­tions indi­cated that the more inva­sive and fast-growing com­mu­nity strains would over­take and elim­i­nate hos­pi­tal strains, pos­si­bly pos­ing a threat to pub­lic health.

Researchers at Prince­ton Uni­ver­sity used math­e­mat­i­cal mod­els to explore what will hap­pen to com­mu­nity and hos­pi­tal MRSA strains, which dif­fer genet­i­cally.  Orig­i­nally methicillin-resistant Staphy­lo­coc­cus aureus (MRSA) was con­fined to hos­pi­tals. How­ever, community-associated strains emerged in the past decade and can spread widely from per­son to per­son in schools, ath­letic facil­i­ties and homes.

Both com­mu­nity and hos­pi­tal strains cause dis­eases rang­ing from skin and soft-tissue infec­tions to pneu­mo­nia and sep­ticemia. Hos­pi­tal MRSA is resis­tant to numer­ous antibi­otics and is very dif­fi­cult to treat, while com­mu­nity MRSA is resis­tant to fewer antibiotics.

The new study found that these dif­fer­ences in antibi­otic resis­tance, com­bined with more aggres­sive antibi­otic usage pat­terns in hos­pi­tals ver­sus the com­mu­nity set­ting, over time will per­mit hos­pi­tal strains to sur­vive despite the com­pe­ti­tion from com­mu­nity strains. Hospital-based antibi­otic usage is likely to suc­cess­fully treat patients infected with com­mu­nity strains, pre­vent­ing the new­comer strains from spread­ing to new patients and gain­ing the foothold they need to out-compete the hos­pi­tal strains.

The researchers made their pre­dic­tions by using math­e­mat­i­cal mod­els of MRSA trans­mis­sion that take into account data on drug-usage, resis­tance pro­files, person-to-person con­tact, and patient age.

Pub­lished Feb­. 28 in the jour­nal PLOS Pathogens, the study was con­ducted by post­doc­toral researcher Roger Kouyos, now a scholar at the Uni­ver­sity of Zurich, and Eili Klein, a grad­u­ate stu­dent who is now an assis­tant pro­fes­sor in the Johns Hop­kins School of Med­i­cine. They con­ducted the work under the advise­ment of Bryan Gren­fell, Princetons Kathryn Briger and Sarah Fen­ton Pro­fes­sor of Ecol­ogy and Evo­lu­tion­ary Biol­ogy and Pub­lic Affairs at Princetons Woodrow Wil­son School of Inter­na­tional and Pub­lic Affairs.

Reference: Kouyos R., Klein E. & Gren­fell B. (2013). Hospital-Community Inter­ac­tions Fos­ter Coex­is­tence between Methicillin-Resistant Strains of Staphy­lo­coc­cus aureus. PLoS Pathogens, 9 (2) e1003134. PMID: 23468619

Source: Princeton University

Recent Videos
Meet Jenny Hayes, MSN, RN, CIC, CAIP, CASSPT.
Veterinary Infection Prevention
Andreea Capilna, MD, PhD
Rare Disease Month: An Infection Control Today® and Contagion® collaboration.
Lucy S. Witt, MD, investigates hospital bed's role in C difficile transmission, emphasizing room interactions and infection prevention
Chikungunya virus, 3D illustration. Emerging mosquito-borne RNA virus from Togaviridae family that can cause outbreaks of a debilitating arthritis-like disease   (Adobe Stock 126688070 by Dr Microbe)
Ambassador Deborah Birx, , speaks with Infection Control Today about masks in schools and the newest variant.
Woman lying in hospital bed (Adobe Stock, unknown)
Deborah Birx, MD
Centers for Disease Control and Prevention  (Adobe Stock, unknown)
Related Content